a2 United States Patent

Narvaez et al.

US009461942B2

US 9,461,942 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

SYSTEM AND METHOD FOR PERFORMING
CONCATENATION OF DIVERSELY ROUTED
CHANNELS

Applicant: Broadcom Corporation, Irvine, CA

(US)

Inventors: Paolo Narvaez, Wayland, MA (US);
Murat Bog, Fremont, CA (US)

Assignee: Broadcom Corporation, Irvine, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 130 days.

Appl. No.: 13/925,531

Filed: Jun. 24, 2013

Prior Publication Data

US 2013/0315258 Al Nov. 28, 2013

Related U.S. Application Data

Continuation of application No. 12/716,094, filed on
Mar. 2, 2010, now Pat. No. 8,503,470, which is a
continuation of application No. 11/336,188, filed on
Jan. 20, 2006, now Pat. No. 7,684,426.

Provisional application No. 60/645,841, filed on Jan.
21, 2005.

Int. CL.
HO4L 12/54 (2013.01)
HO4L 12/939 (2013.01)
(Continued)
U.S. CL
CPC ....cccue. HO4L 49/552 (2013.01); H04J 3/062

(2013.01); H04J 3/12 (2013.01); HO4J 3/1617
(2013.01); HO4L 12/54 (2013.01); HO4L
49/351 (2013.01); H04J 3/1611 (2013.01):

(Continued)

(58) Field of Classification Search
CPC HO4L 12/54; HO4L 49/351
USPC 370/409
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

12/1976 Costales et al.
1/1995 Morton

(Continued)

3,997,729 A
5,383,196 A

FOREIGN PATENT DOCUMENTS

EP
EP

0 814 580 Al
0901 306 A2
WO 00/46938 Al

OTHER PUBLICATIONS

12/1997
3/1999
8/2000

ITU-T document, “G7042/Y.1305: Link capacity adjustment
scheme (LCAS) for virtual concatenation signals”, Feb. 2004, pp.
1-32.%

(Continued)

Primary Examiner — Andrew Chriss

Assistant Examiner — Salvador E Rivas

(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
& Fox PL.L.C.

(57) ABSTRACT

A system and method are provided for performing [ocal
Center Authorization Service (LCAS) in a network system,
the system having a data aligner configured to align bytes of
input data according to groups of members. The system also
including an LCAS control manager configured to generate
desequencing control commands in response to data input
from the data aligner. The system further including a de-
sequencer configured to de-sequence the input data input
from the data aligner according to desequencing control
commands received from the LCAS control manager.

17 Claims, 35 Drawing Sheets

#id {10:0]
ain_vc_ch_sts vt
| aln_ve_ch sts_aud

aln_ve,_ch vig type[10]

e

el e wid(i20 o o
{_aln_lvc ch sk IoiiB.0] tve_dsq_ch_sts vt
ain_ve_ch sk Joas_en Msme Msfatus fvc_dsq, ch. sts_8u4 -
ain_ive_ch_teas rev ext en ermory emoary e, dsq Ch Vig fype.. Ech‘v gg—type ey
ain_ve_ch_foas_rev_ext so_lpidfs:0] X =10 e
ain_jve,_ch accepted fvg_dsy_wid[12:0}
|_ain_fvc, ch nl veat_exp sqi5:0} ive_dsq_ch_accepted N
ALN 5K SK. ive_dsq _ch_sk_ipid]8:0] s DSQ
604 State Status ve_dsg_ch_sq, [5:0] 608
ain_tve_ch _data{7:0} Memory Memory
ain_lve ch dats_vid ive, dsq_ch_dnu I
| ain ke ch hd kd Ive_dsy_ch_data[7:0]
::: Ng z: iﬁrm:ol Ivg_deq_ch_fail
““““““““““““ — SO e,_dsq_cn_rst
ain_lve_ch_foil Status e dsq,_sk_st .
LA e O e, L L S — —
|_ain_1vG,_ch rsf — o Memary
ain ve sk, rst

interrupt status bus

l[ Status read & wite bus



US 9,461,942 B2
Page 2

(51) Imt.CL
HO4L 12931 (2013.01)
HO04J 3/06 (2006.01)
HO04J 3/12 (2006.01)
H04J 3/16 (2006.01)
(52) US. CL
CPC ..o H04J 2203/0069 (2013.01); HO4J
2203/0085 (2013.01); HO4J 2203/0094
(2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

5,577,105 A 11/1996 Baum et al.
6,842,455 Bl 1/2005 Heuer
7,424,036 B1* 9/2008 Alexander et al. .......... 370/474

7.492,714 Bl 2/2009 Liao et al.
7,684,426 B2 3/2010 Narvaez et al.
8,503,470 B2 8/2013 Narvaez et al.

2002/0001308 Al
2002/0009048 Al

1/2002 Heuer
1/2002 Hosler et al.

2002/0038907 Al* 4/2002 Miyamoto et al. ........... 257/686
2003/0095563 Al 5/2003 Wu
2004/0062261 Al* 4/2004 Zecharia et al. .............. 370/419

2004/0076168 Al 4/2004 Patenaude

2004/0105456 Al 6/2004 Lanzone et al.

2004/0120362 Al 6/2004 Chohan et al.

2004/0136217 Al 7/2004 De Sandre

2004/0213268 Al* 10/2004 Gupta et al. ............. 370/395.51
2005/0175314 A1l* 82005 Hu ..o 386/1
2005/0265251 Al* 12/2005 Acharya et al. . 370/252
2005/0265394 Al* 12/2005 Chapman et al. ... 370/480
2005/0281197 A1* 12/2005 Honda ... 370/235
2010/0254709 Al  10/2010 Narvaez et al.

OTHER PUBLICATIONS

International Search Report Issued Dec. 5, 2007 in Corresponding
PCT/US2006/02144.

Taiwanese Office Action directed to related Taiwanese Patent Appli-
cation No. 095102426, mailed Sep. 18, 2012; 6 pages.
English-Language Abstract for European Patent Publication No. EP
0 814 580 Al, published Dec. 29, 1997; 1 page.

Written Opinion directed to related International Patent Application
No. PCT/US06/02144, mailed Dec. 5, 2007; 6 pages.

Taiwanese Office Action directed to related Taiwanese Patent Appli-
cation No. 095102426, mailed Oct. 27, 2014; 2 pages.
International Preliminary Report on Patentability directed to related
International Patent Application No. PCT/US06/02 144, mailed Mar.
10, 2009; 7 pages.

* cited by examiner



US 9,461,942 B2

Sheet 1 of 35

Oct. 4, 2016

U.S. Patent

vl 9l

3HY B0

1
WLy % mxmmvﬁ
(7% vy () U0 u "t
T G S0 7 SI0U 10 B-SIY UG SHPE M OR0U 10 B0yt RECTA Ity
38 YNEn o _\,mrﬁv G Seanind awiy ywm%ax SR} THIGTAIGL GBI 1D cm:a
USIRUSEGUGT (R B DUlsn SOLRY JBUIBYg SHOUHSURE 7 BR0U DUB Y 2300 UeBasIaT xm.wx w

R e

Womtel |

4,57

unnebaGhy

o

a0
04

ALY

sty

# 1%

e RTINS S,

AS
~

RS
e *

S i.,i....,..s:\\\\ m L
it

k\av P
H

“anng

T SYDVLYOAAG popircid B0IAI9S JoUIBLIT




US 9,461,942 B2

Sheet 2 of 35

Oct. 4, 2016

U.S. Patent

dl 'Ol

LY W

WY SRR OURITY MR - BTN PR AT O H o

G035
s T

GaeTEA i

HOSH
YRS G LS
WS ey 5

HOSW

¥
£
b
i
i
H
H

fes
% TR S S

S0 LYY

SUIUPRUEIWIPRENIE o

prvovseeeve,

BNy

2
5 fe
"

\wkﬁs? «I
P T : h
E ¥ 7 (G104 4] :
s :
& ’ Vs M
EDA A Y £0h sol ¥ COAR
< 2 H ¢
i A : : s
PLOCTIA Ly . Lopenn ) R | P
; K 75 GROP=1 wmwm:m{e.. £ IR AN R PNEL ) B
; s SR ) ; - ? : ‘
0035 o0 5 0038
; 1 21 ; Ry ;
# M ’ T o
iy i

% 7 oeps

Herdl

e

AT A FYLTA

R

¥

» g oonsendt 4 frosiooeonsconecreovanncasccesy

¥y

=

)

A A R

B ¥

oy g
e
&
i

¢ A
by
3

pog

AOSH

Contiguous Pavioad

Ayeoydeioy UOBUBIEIUDT [ENLIA

&



US 9,461,942 B2

Sheet 3 of 35

Oct. 4, 2016

U.S. Patent

Jl Ol

LY HOHGd

RS BRARIIIHIIY A - SLCTBDWIMIALIO. YA § S00E & mm.w ¥
powslieunw Pyoa sesmdun ng Aosmduss 10U 5 ST 0 955 ByY S
L70OA I PRUSHORISY SUDHTRLIOD MG SN I0HUND ARUSIDNS 0 &3&&& SIS ﬁﬁx

rizhad A S A

1414

Sratps

s R
mm@\‘\&&\\ \\§§§\\\
«%\\h&a&Q\\\\\A\\\\\\\\\\\

\ !
M

e

w\\\\\\\\\\\\\\\ S s \\\\\\\\\\ he
;

DIVSSSI9995999909999994 2999599959934

rssmtiniois s

e

o gzt
AR

22 \““M“u\\ 2 ..“mmhn.ﬂw\\\»\\ \me“t\

tth\H“\um“M.

.ﬁ%

T iveny
oomcvercosccsees m il
o

33 s
4 s

4

Bt g it
o) A

SYDT Yim pabeueul [suuey) YDA



US 9,461,942 B2

Sheet 4 of 35

Oct. 4, 2016

U.S. Patent

HES

ok

[ YRR B0 i

G g

LORIIB A wnr, -

i

at ol

L el

RIS PRIBY S

AR

i

et

£ 0% 1eass O] SuMEL SOYE] UDIUM SLUREHINW MSIdUI0s B Ut JUSS 248 SUG 2

BWENbES S

&

ey
-

0} BU2 714 SRS DU SOWRINIE 28 10 0N DR & GUBIROng 20 9L

b

S 0% ADan DRt 51 DUR DESUIHAG DUy a& .3 wed 5

H %
: Z
: H
H H
H H
H H
H H
H H
H H
i
i . & 20 %
e B M\W 3 oo 1S mﬁx\\a‘\\ P ;o
; s e i o
E e ) Aol ile 4
g e g G Sl wet ;
PN 2008 %, vk et - N AT - - ¥
w1 . Xav bt s sy 4%

-

% gmﬁ

-
o

m

PRSP

t4y iy M

TR e

169 L DOgD m L 03

mw&ﬁ BRI RA RN A A

BUGYRIY Pyp oo ,

(uol

IBDHIPOD ST 9 LVOA) SLBHININ Py



US 9,461,942 B2

Sheet 5 of 35

Oct. 4, 2016

U.S. Patent

WO SRAMEIIUB Y A

- GUOHBRIIIGT v.\ 53, GOOZ 0

G LA B

Bl ZLG-R0PAGE L] IRatar 0 B Z1y $DYRL 9EAN GA0Y 10 RN sysihuos

BRYE] SHUIREMMY SIA-gL
S48 471 Aresn pEesdes 81 vy

DERLIBAG (i 2} 10 184 9 g1
Gz W O0oA BD O PN U2 NG

A Ry tmom IDPETIA TRIEPRRY
o s d 95 .mm AT (e
5, &

1
¢ 1110

oo | gpeee | oo was:

mmmv

: N\wmmﬂxw R e -

gt el 41

jeo

{

%

H

P00 SV 8 LYOA) SWElINW fH




US 9,461,942 B2

Sheet 6 of 35

Oct. 4, 2016

U.S. Patent

41 Ol

Ly "

e
ﬂ.n ra

»;mm \Ym ‘

kel
Py grars Ay A g iy 4 415 A% z s, - k2
SR RIDAY IV, o SHRRMTRINANTS PURBEL 00T 0% Jiw
Qw} g 1 m. RRRTIYE,
S350 g4 ek gy $5 ARIARLS K Beripiyas (MR
Aiich Ly IR, WY 3 BRSTUNARE MR A0 BARS 00 PR
s
H
H
P, i
B3 Sngpncocannescciise, sooisers] k4
i A

V\w&.iissas

2 \ﬁ,ﬁ

X

Rt

[ NS

oy
&
8

BUIYOBI 81BIS MUIS PUB 82N0S SyDT peylidwis



U.S. Patent

e

Oct. 4, 2016

Sheet 7 of 35

o E

3

#5

>

<

w3
ERS
R
ey
N
$ e % faas
i S
§ o YO0
§ S Y
& AN
& R
ped
N
o
oy ::
o3 %Q-é
oy
e
FE8
[ ! W
o
& % B
';‘: RS oW
39 W
X5 - &
A e o 3R
o8 & VU
o N
; P R
B o W
&3 SRR
et A2
3
o
& bee—
S
b
&
o~
B
-5
i s
- -
i
™
7R
N % :Q}
b -
L] § Fand §
{
| S—
o
B By
o N
] -
: jx3
!\: pe]
£ 8
TR
D]
e W

US 9,461,942 B2

Fig. 24



US 9,461,942 B2

Sheet 8 of 35

Oct. 4, 2016

U.S. Patent

s " aamog
PO e . SINPOT
yodsuery | yodsmmiy

|

1BALICY AL
o FANOY
YIS A0

Loy

o

%
A
€3
P

%@@3 @ﬁm@mmﬁ@
AN Y1}




US 9,461,942 B2

Sheet 9 of 35

Oct. 4, 2016

U.S. Patent

AN S DT

SIEM

PigH
AU

RGBS

JIR IS

BBAA SREBBD

744 %%
BRI 4 Harty

FOUNOL S

;

<
b
%

ey
SBRIBNRT
pANES 1RO

Grrrrrsssrssvesrerlys

IBAIC
HUIS

v
e
oy

N
A

WY
e

4

S A%

[

1

.(\\\\\\\\V\Wt\\«%
kY

SV puey

Kigaunsy

%

A R

sangankag
peogig

wanhag-ag
pomfy s

3

i

~
A

O o i i

Z
z
z
%
Z
%
%

A Z
7 Z
B 4

HHON |

i
%
x\\\s\k\\x\&;\\\x\\\u

pruhng 3

o iiiben et K

% N peohnyg pussy

H

PRy s I
5951 pusy .. Jargaiey

[ amuang ums

% Sy pung

; ‘m . m Bt #

LEER Ay , :
24 Ladp-4 hag FBRGS

* SO 5y puns

AEIIEP D0

G s g

G e . 3 P

e fvtiey Bag
HHOH1L T T
% ¥

Y4 R \
bay yamy)

P
4

ZIE L WP

“erssnsragpesssress”

2 AR ]
BILL serpumpg ppvy

Legusy ppY) HOS MSIMH SY0FT

ag B

UBIBM
P
SUNOT

AU
aoInoD



US 9,461,942 B2

Sheet 10 of 35

Oct. 4, 2016

U.S. Patent

s
7

puy

ses] HOV-GH SaPBes puB 110 i sbueys 99019 YIS (¥

arm 1) soyarenss 3501 S1CAnitl U0 PNOWE = 1173 s
ﬁmw FEPLBAL MY B0 50N = LD &ﬁmmﬁ A4 o giimu SPDR pus @msﬁg wu%ﬁu&&wﬁ%ﬁ m

e W= LGV SPUES PUB 110 U aBuR S9Rp g M.
ax IR M U T = 1 47 BUINSS Ag UORIRRURE SUIBNEE BOMOY | w

e m\\w:
G BN s i e By
L N e (08) P (01000
squsyppy
L1 M\m, ............... yoct
. xﬁﬁﬁ Pt §§ .......... i )
IS h - 1equisp ppy 03
s 2 . 4 X R\% w\N
L8 ; ; ¢
s el \M& & wm,mkw s ﬁmwﬁﬁﬂw
wmwmw N\W& wﬁwmg T—" o
59 | 4
._ UDISIADIY

silwexy eouenbss UOHDBESURIL DDV SY



US 9,461,942 B2

Sheet 11 of 35

Oct. 4, 2016

U.S. Patent

21eM
"pagH
g

FBALIC)
HUG

e, WUIS SYOT

e e
PETIRNGD
088 1Dy

“erssserornrrgriresrsrod

A

mﬁxwﬁww
SV gy

suni s SIS §

U Ay
hag woayy

TV

% Actrrersrroeororedecs

s s en s 2t 000

ssauanhas ag
peake g

topearing

B
%
z i

i

::\:w.s % \«m.mﬁw &Nm

nn t\\\tttmttk\\vtx\\..

AT

.

SYY1puEg

MR

e :
| Bug sy

\\»\x\\»\}\»\\\\N\\\\&\\\. thr

T R

{5y i

LBy py

SHIBUL MU U0 (IO = 140 BENES A UOHOBSURY SOIINU B0IN0S L Ui

aas aUNog Sy

g "Big

o

i
A
H
i
H

H

H

swauanbay
pRhe

H

N

[ wwng

\\;\\\\s\m\wf\::\.\

Qlem
~RIeH
83IN0g

npesifing poayg
e —

$3000050 00080800700 S0t 000800 e

130T
5

et BAE
U310

&

LTy
YEos=11%

&

[Ewl o]

Bug gaeyTy

®

Pt

L B
7 3
\(\\\\\\ o i

P e

59y

i

By

Lo

UL T

Likss A

T Y

4 ]



US 9,461,942 B2

Sheet 12 of 35

Oct. 4, 2016

U.S. Patent

AUS SV3T

2i8M
-PieH
HUG

%&ft{&c

L oeyyipuny |
.Vm cm m Fbserosecocececese \\ttimw.\ s

1A HD
“bemyg

SEYNTy | msws

At B )

FepLEp ppy

T T _angaasy

”.»ﬁ:a:aww‘ By}
proghte

1

:
3
| peapleg

H
H
\\.m\\\x\\\\\\{\

A

inssRnTy
Yy Py

SNEURRRNRRR.

nsreressses \\»\\k\%«\\:1...,\2.,«.(\\

3

Ay

cssb000 0000000000 00000 215

4454 oY

» .\\.t\\\\\\\\\M\x\\v\\\\\\\\\\\k

A

EEME L)

“wag ey

-

98 "B

2UN0E SY 0T

sanuanbng
pa s g

[ won
O

z

. DIBM,
(Z) somewy ..
pumsieg ~Pigid
308, BEHE 83IN0G

peatheg peas
\Wv

tosney
¥ pusg

Yot sssiisetaiieiiig i ool

7

Tx{ hwy
sﬁw

e wﬁ
WHDH= 1LY

%

T ey

By e

BAIG
a0In0s

H Mﬁmwkxﬁ
e |

BT
Sy pHEy
%
Lelfmgt BAY
G0g=140

*

\\\\\\\\\\\\\\\5.

i

IR A

AL PR

WO = LG BPUBS puR T Lo 1 SHUBUS 08100 NG (F dBig



US 9,461,942 B2

Sheet 13 of 35

Oct. 4, 2016

U.S. Patent

BIEM
-pleH
YU

IBALICT
AAE

U Sy or 80IN08 ST 46 by

asem
ik

e nRg
pmeranst

ALY
HOIIBUeT

R

BADRE [ix33¢3: 0% m” " “mn B
" Eucmswﬁi ﬁﬁmmxwm
| puoeg 4 m \w&&maa
~a25t L ‘

rrrsrsorssronsonngssesssossmvsmod rrrrrse vevs

m

B W pEnfeg WP SS—
:? x%&%& ochon PAIGTRG S 3
R 195y e,
A~ m;\\ . -4 a,m ESQ 7
- 12T ey %4

Syt poss | SV31 pusg
£A, : ¥
i
IV e Hivd Wy SY
“bag wran %
| S W M kA
» %M o e gy

1BAuC
s

m o) ymg |

,,,,,, ; 4

paany
S puasg

:
$o Mg bag
aaY=11D
: 3
113 Mwﬁu %s%?.w

Anmamnasnannd

I
NTRVVRWN

&
.

‘bus ey g

R

o o 4

BB o fepars w3}
HLBY Ry SRR LY

{Aum y) g .ﬁ, B B0 U0 WY =TI TR JBCHUSUE MY

%

:
ug S0 = 110 Baes Ao o sppe pur ebusys &wﬁ wm&nmm ¢ dog



US 9,461,942 B2

Sheet 14 of 35

Oct. 4, 2016

HAOR K

 S31:% SOV as
. B R L AT

|

,.\\\tt\\tw.\t\}.\ s

Aaid (] T ey
: BT pURS

v\w wﬂ\m M M‘.W M\e\3\:«:«\..WE\S\:\!%

11
By

BIBEY

L asuanbus g w
pesghng
serveeieengomosoneond

AT

YEALEAETY
. AR

swssanbrg
grnfe g

sanARRRRA RS

g
poaiig pung, |

i OOt i <o p ot

%

%

o recokecoosricecctosiniy

W Wy

Exwﬁ
sy puss
%

yeg hay

%

o gw
BUOH~ 1D

poossnonsesirorsiidion

i smaag B

Somrsnmpssraonrssssnmsnsissnsssssessd

%

kS

L
CHY puBg

%

Leting Big
)

4 st )

G
4318
BOINOS

JEYA g

 BoIN0G

U.S. Patent



US 9,461,942 B2

Sheet 15 of 35

Oct. 4, 2016

U.S. Patent

USR] Ppis dunin
1904

Fird

r3

o sy

SRy puey

178 SRV T

N SRR Ey
o

Gty Y-
YIp (POYHED

&
fes

DIy WOd54

FXFIVRRR

by ONVEs)
ey s

W g0
LA ST

i B

| 2oy
{nuy ) rhpmny
Fyopmsyrry wimeg

&

g

&

Z

7Ey LLOW Avmmdiun ), ponmgl
PHMIRI Y

H
;

Y S
YL (L

A
OV

$TY BrAysuy
Apjary
jeLasRy

Vanamnsasnasassaanssnasanas?




US 9,461,942 B2

Sheet 16 of 35

Oct. 4, 2016

U.S. Patent

112 48

oy
O%
-

%

e

{rd s 4 »mm.ﬁww

PSR WOl PERY

™R
Y
o

% 4

%

A E T

DL B

4£on
%
i

Uy ssBvapy

ok

S A W WING

37

R 2071 A,......x

HO4

EY

| opmg

wi(M.MUW%M \ *

™,

g
\\\\\\\\\w\

P AYDA

[t dg @i it
D04 SRESTY

3

@y By



U.S. Patent

SEQUENCE

Alignmen

Tnput

Oct. 4, 2016

Sheet 17 of 35

: f%z

d;\’ ‘:{: N‘:& T
g g 3
o
RR/RRR]Y

Ay

A il

3 e

- el Wy s =

wg@ q‘\{j \‘3“* IHERG ‘KX:
~§ : ® 3

19 b ' 2ERREY | )

0 . W <%

US 9,461,942 B2

4%

i

L3

Wy
=

- e v";‘;% avnans | QCS
PRI
by ArR &R |
% <5 < =

448

iy, 4C

=3



US 9,461,942 B2

Sheet 18 of 35

Oct. 4, 2016

U.S. Patent

(1 By

ey

Vm [{ o1 [2iag]
g BRa

W
:
¢
‘<
843 7 uByn
s
v gl Boeedn
: o
4y ¥ woneyT
By Jw‘ WouRg
¥
b3

%
:.Ei.ﬂ.c.\\m.x\\kx{\w

R
i)

Zyy

<
3
3
k3
13
]

7 umis |

H s
£2 H
.A 1
; ;
¥ $
BL77 N s B B1o Ty
g gt
! &3 . ).\ . B
LT S s R Pl
¢ o
k3 H
WiEiQg. % Ry
e - ] .\
3
0y : % o HEY
e : .

£

4

3 ued)

.2 g »
@ g awﬁw i

¥y umgs

A P RN P S PP A

g
&

4
%
o
-
Y




U.S. Patent Oct. 4, 2016 Sheet 19 of 35 US 9,461,942 B2

. faxg R
B S B
b £ =
Sy R
3 an =
is Bl
% E K
; & =
x § 3
= B ®
ki W Py
2 3 0
Ve P
[}

2
At
&

¢+
£
i

=
- S 3
@
® 8




US 9,461,942 B2

Sheet 20 of 35

Oct. 4, 2016

U.S. Patent

G ‘b4

e Aud T Bn yo mmmgaov

HRy U BUE 4D

Uo yul BuUB 47

UD D MS 4D BUE 43

uS JBIA BUE 43

{orotlpn yo Bue

& &

75
D40

DA 04 0 BuR

[oL Ll sueun des 4o gue

3

oigilon sue bsp

[o:¢]eiep 2uE bap

5 & A

{priilus pueyo deo 4o sue

suop deo U ¥o Bue |

[oorjzueys deo g Bus B

o

forplliuyo den g eue B

D des B eue Bjo |

SR IRB 005 O MO TRDD |

N

rey

AICBng
erl 1D
LYTAUON

4

pia BUER DEp

&

{o:olpidi sug bsp

305
Osd

PRE I8 KE oA XD

1BISBLY SIS XI IOA OX3

dos 1A X3 19A OXD

5

Shiq pesl sHgis™)

OLg
Al

R G R

pid 1A X JOA OXD

&

[oolmdy 4 eve

&

piea it sug

E

805
HMTNTY

b 2lmep y eue

BB UT DER RUB

ug Aud i uyd bie suw

Kiouispy
BIRIgRIElS
HO

oBry %1 10N OXD

RSB X4 JOA o3

FUSIA X§ 10A OXD

A SIS X 104 OXD

b & & & & &2 B & B &

LTREJON OXD

il SNl X1 I0A OXD

4

{0:gkoo &4 3an %0

H & B

iy L hatuo s Dye pue

& &

e i ORe Bue

{o/jeiep an Dye gue

A & &

J05 i Dye eug

PHEA 1M DHE BUB

ALY
YNV

&

Ig:giaos X1 10A 0xo

[ A > oA oo

{0 71D x4 108 0K

foclsis 1t JoA XD

& & 4 &

UHE XS JOA DXD

fodlmep xijon oxo

£

IPA %) 13A OXD

yG4
OXO




US 9,461,942 B2

Sheet 21 of 35

Oct. 4, 2016

U.S. Patent

208
0540

ML

209
D40
sne SR % pead snieis snq snyels dnuauy
b
* 181 ¥S oal U
» Aiowsep » 181 40 oA U
185 48 bSp oA smeg - fiey yo oA ue
) 185 4D bSp oA 0% ” I——
- ] 4o bep oAf » N Ll s B
- {07} Lluws 4o oap e
M [0:2]esep yo bsp oy M Y vy U0 o ufe
h nup ys bep o4 PIA B 4D DAf uje
Aowspy Asouisiy * - .-
* 6T BE U5 bep on smEs swEg [o:jeiep o on uie
) {o:olmdl 48 uo bsp oaf %8 Hs "
» pajdancy Uyn bsp oA} - {0.Glbs dys jens Ju 4 oA e
a {0 zL i sp oA - pojdacos uo oAl e
» e ooz eeooess ~losalpidl o8 xe ASd SEO[ YD oM R
o o1 mab}m@ﬁﬁimmn 20 Asousapy ARSI M US 1X8 A3 SBI| UD 0Af uje
» pre 515 42 bep o SMEIG s = UD SED| A5 4D on uje
SIS bsp Ny HO Ho 1o [0 SIS U5 o e
N [gigylom onp e
Iy {0 11edA 1A yo o) we
- PRE SIS 4D OAf e
09 - A SI5 4T OA] WR
OAT M R

493
NIV




US 9,461,942 B2

Sheet 22 of 35

Oct. 4, 2016

U.S. Patent

474
pEi]

[

L ‘Bt

oLl
BiEp | v OAUON 240
Pz
! o |l
sng mumypeas uogemByuo [ sng peal siegg | | Sng snyes Jdnusu
] 1Y
0o
J <b 4% <h
/7 Pr——
Riousen
uonenbyuon " i
UO0RI9G {0 £]eten Yo bsp o
iayng
SapIosy - 1S5 40 bsp on
oL M 8] YT DSP OAf
(XN - nug 4o hsp oAl
YNV Ao AiCLUS o
T piA BIRp BUR DSD i ! W - ncibs us bsp A
SIS Jepng Bleq & e Teon s 4o DRp. oAl
% - 1pIoTYN 19pInEY 2 JEOR WS MO DEP O
{p:2jeiep euE hSp {o:olmdi s s hsp oA
AN * [0 oipd gue bep . [0:gylpim bsp ony
N, . ini] odA) D yo bsp oA
S, o ar e R A7 4 G R
N, {0:0tjpy eue bsp . ) PR SIS uUd LSD OAl
™, =0 I8 S5 4T DAp GA)

YL
I




U.S. Patent Oct. 4, 2016 Sheet 23 of 35 US 9,461,942 B2

N
8 }
B 3 <
o Ty H e
. i
o T § o
ey W { T
Mo W H Nt -
YOS i
& 3

P

3
b 3
i 3
i
N X
¥ ~ o~ X
R = B R
ey WX e
oS Y IO 5
a7 ::i\ & ¥ W R T
S 2 A% -
; S e S = ¥ ®
N s - = Py
el i o O Fer owwe P .- N
& ® 5w o R H
= PN ; § Sl TR i
% e 7%
RN Y <
& g
< Fae
&y
AN R >
o hedd

Evre)

1

34048
p

sierfig

<




US 9,461,942 B2

Sheet 24 of 35

Oct. 4, 2016

U.S. Patent

~
&
o’

SENR ey

>

5 e

5 Bl

I--hd PULHYY J2DUDIR

LS

0671 %Y e sy sy

A0

\.&&
Siod AW LK 08 PR,

AT T S

o Pl HIRS,

EELS

IR

K QHITNTY IR

IED

e

D8 w3 s, Yoy vy

1 sapng

RN AN,

w0 g G PG S




U.S. Patent Oct. 4, 2016 Sheet 25 of 35 US 9,461,942 B2

e X §N o)

‘ z
.
i

24
2%

%
3
4

OFR

*
2
x
i H }
NUIUUNIIPS S i o= WUV
| S | -
P— ey
o .Q.“-.-..».-..E” o g R
3 e P FETERRRE } N kS -
= X {8 F v 3
SR PR N =
H Y
40 JEE S S i RN VO 2 =
3 Bt
‘‘‘‘‘‘‘‘‘‘ gy
- - F S SRR S:
S H H H

EZ 22

4
o
B
2 S
H
H
H
i
;
%

23
f
i
a
.
K1
;w]
i
Hs
.
;
;
;
:
/
;
;
$

R B

R
<

4

{:'y
4%

3 3
S \A\“.\-A}
M EE $ s -~ SR
i.m«r Rassaanan :
U SR | ‘ - 3 :
{ i i Es §:

$"', 5

L5 % iy
3

oy
ey PNy
Mo
> e > g

Y
PO -

b
%
%
k23

w».’..%“ “ ? I
no 3 Sarsanaas
. ey

e = SN

i
5
7
§
3
:
5
%
&
4

{
%
J
5
z
<
i%

AR W W

)
y

| SE—
Tassannandd

: et
Wand E [ %:&»-W

1

----- annanemanasd

»
2 2
e “q‘a§ - 3 x
peT—— ot
ey
i >
= gy ; \ %
..«Nm«pgm:\-tm% E.M:w?.mm\w* Lot o % @ m .
‘m-.‘.w@% -~ 4 g [P SRS
& m oo
r had
ga g g
& el W oa
hY A
& 2 SRL S PIREBET) NG PISR: §
= N RS IR BG pasEy -~
= & SPUROH IRPIREF N



US 9,461,942 B2

Sheet 26 of 35

Oct. 4, 2016

U.S. Patent

Lo PUROY WENEY

HAG

§

XD

7+ PUBEY PR

D

1

L1 Big

14N PUBOY SpUNE)y

N PURGY SEpUNE)

J40

AXD

\my

&0

A

340

R

¥ $png



US 9,461,942 B2

Sheet 27 of 35

Oct. 4, 2016

U.S. Patent

AT

(371 o i\s%sff e
mm,mwwﬁﬁmw ) repuatey X amﬁxﬁm \mmmﬁ ™y
g —" . . gﬂnﬁe\; .
Qﬁﬁmmmxm@\w me

i
il O

Jenuanbog

il =

peay

, P
_180qT B | Oigp IO
i
i
{
oh

m

|

: —
-

N ke FHRRE, A PN WSS

2z
HezArpuy




US 9,461,942 B2

Sheet 28 of 35

Oct. 4, 2016

U.S. Patent

2o~
- “ w.\ \,\.\ ).)\...s. .»\?.\.:?r..:.‘..‘
", \\ ~,
£
N DFIC ,.m / fm,
L AT [ xems |
% \\ ¥ 1 \M
f.f... .a.r..
MW. m [ ff%’t.r‘in\...\ .\.
A 4



US 9,461,942 B2

Sheet 29 of 35

iR tR
Japuayy pordsoay-un

1 By

Pedy 0 WY
Jequiapy padendy-goN

§ v
il i e
..‘..\.,»...\ i o nw.\.\ o
o o
et i) s

OTIEY ) paderoN O

PRSI m Jde

e 4

.,

STy
ﬁagmﬁm\nﬁu@u@

o

w0 simquras ppt

B
swmmyoy

Oct. 4, 2016

U.S. Patent

03 “.\.ﬁ%um

WU

|HRRYD Ace U0
AOLIBACY

Iy

e RIERG IA

LG

o LS
N s £

§mra rosronstsonsssos s isin s

Y

e

s

Fn

-

bt i sttt

Y DA, |

P

AN s v s it it

PUIRR U6
ragusapy poydoony on

PESY Oy

equuciy padanoy Aoy




US 9,461,942 B2

Sheet 30 of 35

Oct. 4, 2016

U.S. Patent

G1 By

mmw\,\@&m e
Eyera g et W 3 Vi ety s \
FEPUATED bt 1M1 ~ TIEY Bainl” A PRI g g et e
PHATED Py 1H00 JEPUAYED bk 1%7 IR Y%
».\%e\. z ,
/ 5 : .
t

i

« w..é\mxswa: ...... I

RN

¥,

H

H

[0 S5 WO S

o

nasnand

i
:
5 S,

o
pamnaaas
i
1
Toanaas
Nanans
e

prET Y e

gerceqeotosgosoisnrargna snmsmnin
F i

]

H

|
¥

w,.
oW
H

).

N e e
AR R« A AR A =R RANST
N LA AR AR AR R ANT
K
H
3

H
m
{
t
}
a\

USRS
[ e
B s e s A

\v,.hw..w...mm&. R

B

fooregroony

L

2

.




US 9,461,942 B2

Sheet 31 of 35

Oct. 4, 2016

U.S. Patent

91 8By

Aed 3g-1 +
WAVTY 19 +
uiposury

yiduey

S
“ Y

Snny
ey

o
(.
o

FROC

Fuppeg PIED JO 881 50 DIAG-TY A 4

¥

SAAE 19



US 9,461,942 B2

Sheet 32 of 35

21 B4

) {3414
5144 07 A wor-sisanboey

| _ st acr e gy gﬂziw
WPUIES pgYN] HEPEOED s XD i PN Yef s B
u d .)-hhhil‘l\\\tf .

; )-.\\(\l(((shh\hh)\b)\\
; i i
N
B ’

m \M’l THDHIS G

~ &

.,
i
s

o

422 IR S

AR A

£¥8(] | e

Oct. 4, 2016

U.S. Patent

o D AOW
| |

previiperi sgrsteceerot
I
b Z 7 ¢
H H
I
Lvoesbrrrtdriiidins s R,

e
NN s AR RS

PR
~
R A A s AR RAN AR TR

o

N,
B

[ETVUEEAIR S
- senad mssssmnae,

A ® v

ns o soiicm, \t‘!zci\

¥

&
N
I b
Beveerd
L8
N
N
<
famaand
s
3
;
i

$014G 7



US 9,461,942 B2

Sheet 33 of 35

Oct. 4, 2016

U.S. Patent

g1 Bl

£1 A

L
e

-\:::l
i
BN
>

O

e

i gk pmmppopr gy

IR

e

yeananay

IO E RS Rt se b0t

0
¥
Roey

[ITIIVISISPIRISISE. 4

N,

<

NS .

(D
Ly
s

I,

§

J’/

e

"%, %

FPIRIRLII 000ttt

TR IYIIP RIS

o
N



US 9,461,942 B2

Sheet 34 of 35

Oct. 4, 2016

U.S. Patent




US 9,461,942 B2

Sheet 35 of 35

Oct. 4, 2016

U.S. Patent

0z ‘Big

2 " i
groorn e o P - ypororry  gevees .
: R : i H [ T S ™,
g Geveesd I~ A anrr S ; :
f 47 £ i $o ww\!‘m w»!...x s,
P [
Srrorsit  Geeeoed  Gueseeh ot S H Z ; :
frod eeed e oo roorch & R
Gorrrsh  reeect Govana S— . H PR H H H :, - .
; ; ; ; frreeed foe. — e i Grerred e %m«w.urﬁw nl
: : H w1
Greciil Grrren F 4 osoor i S ; 2 ; P H
H i 7 4 “ H - reeendt Grecect Gareers
i 3 - i ? T 7
frocecd, H\\\\\\M . S Y AU S 1 [
H A A T At T e
AR : : 7 i
; j i P
20N S SOV S brennd SUUUD S eveel W\\\t\“ Fasaan e
R e .
7
AN SV S S I I " T Ve
¥ H H
ren e Iu ..... SO S
H “ae ; ] Ty
AEEPRT. roronnnt #ridaa, 3 o &t trrr sy e "~ )
; 4 ” o~ 2T ¢RI
besnrss sy S W . . e ress.
1 3 p:
F- st Frmrne ] A N rrs,
$ ;
os i r! bvesnd frannd oot o rand PNV am
Ay
L9 A
&
S::W ey ooty —
- dpoees faneind
3
; P
bt e Gosssn e S “n A0 G
M E ot po s XY 4]
e [ rored ress
)kim rrres] osecd, Gwennd
rod S S U S

9y u
- JERVV PRIV tdddmmvune, \MV

]
, ;
SN PYSw pete



US 9,461,942 B2

1
SYSTEM AND METHOD FOR PERFORMING
CONCATENATION OF DIVERSELY ROUTED
CHANNELS

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 12/716,094, filed Mar. 2, 2010, which is a continuation
of U.S. application Ser. No. 11/336,188, filed on Jan. 20,
2006, now U.S. Pat. No. 7,684,426, which claims priority to
U.S. provisional application No. 60/645,841 filed on Jan. 21,
2005, all of which are hereby incorporated by reference in
their entireties.

BACKGROUND

VCAT

The invention is directed to novel hardware and software
system, methods, devices and configurations in virtual con-
catenated signals, including new protocols used to enable
TDM (Time Divisional Multiplexed) networks to better
accommodate data traffic.

Such systems pertain to the efficient transport of data
services over Synchronous Optical Network (SONET) and
Synchronous Digital Hierarchy (SDH). The term TDM can
be used to represent both SONET and SDH. New protocols,
including Broadband Low Order (LO) and High-Order (HO)
Virtual Concatenation (VCAT), specified in the T1.105
addenda, and G.7042 Link Capacity Adjustment Scheme
(LCAS) allow TDM networks to better accommodate data
traffic. The International Telecommunication Union (ITU)
has published standards regarding LLCAS and for virtual
concatenated signals. The ITU-T recommendation G7042/
Y.1305 defines the required states at the source and sink side
of the network link as well as the control information
exchanged between both the source and sink side of the link
to enable the flexible resizing of the Virtual Concatenated
signal. The actual information fields used to convey the
control information through transport networks are defined
in ITU-T Recommendations G.707, G783 for SDH and ITU
Recommendations G.709 and G798 for OTN. All of these
are universally recognized and well known and available to
those skilled in the art, and are incorporated by reference for
purposes of this application, including the commonly used
definitions included therein.

Virtual concatenation provides the ability to transmit and
receive several noncontiguous STSs/VCs fragments as a
single flow. This grouping of STSs/VCs is called a virtual
concatenation group (VCG). Using the same example as in
the previous section, the STS-3¢ payload can be converted
to a VCAT payload and be mapped noncontiguously to three
STS-1s, as shown is FIG. 7.

The VCAT notation for SONET is STS-n-mv, where n is
the size of the noncontiguous STS fragments that will be
used to transport the entire VCG. The value of m is the total
number of fragments that it takes to make up the total VCG.
The “v” indicates that this is a VCAT payload. So in the
preceding example the VCG would be an STS-1-3v flow.

Three STS-1s make up the total flow of as STS-3. An
STS-12¢ can be broken down into STS-1 or STS-3c¢ frag-
ments; thus it can be transported as an STS-1-12v or
STS-3¢c-4v. The VCAT mutation for SDH is VCn-mv, where
the definitions of n and m are the same as used for SONET.
For example a VC-4-16¢ payload can be mapped to a
VC-3-18v or VC-4-4v

Unlike noncommon concatenations, such as an STS-24e/
VC-4-8¢, VCAT only needs to be implemented in the

10

15

20

25

30

35

40

45

50

55

60

65

2

path-terminating devices because resequencing and the indi-
cation of multiframing is performed via the H4 byte, a path
overhead field. Path overhead is only used at the source and
destination of the TDM flow. Since VCAT streams are
composed of STS-1/VC-3 and STS-3¢/VC-4, which are
supported by virtually all SONET/SDH devices, the legacy
non-path-terminating transport equipment need not support
VCAT. Therefore, the utilization gains can be enjoyed by the
rest of the TDM network without the need to map circuits to
larger fixed concatenations and without the need to aggre-
gate smaller flows to larger fixed concatenations, as
explained earlier.

An additional feature that VCAT indirectly supports—
although it does not specify the means—is the ability to
provide hitless resizing of STS/VC paths. LCAS is one
scheme that defines hitless resizing. Since a VCAT’s pay-
load is broken into several fragments, adding or removing
bandwidth can be accomplished by adding fragments to or
removing them from an existing flow, as discussed in the
following section. VCAT also does not specify a protection
scheme, but the LCAS scheme can also provide protection
control.

Finally, additional wideband support for virtual tributary
(VT)-1.5s (1.544 Mbps) and VC-12 (2.048 Mbps) is avail-
able for even smaller granularity selection. This is low-order
(LO) VCAT.

LCAS

Changing a customer’s bandwidth profile is always an
issue. It is important to take something that works, change
it, and make sure it works again without anyone noticing.
Most customers demand this, and many have it written into
their service contracts. The best-case scenario for adding or
decreasing bandwidth occurs when there is enough band-
width for both the old and new paths to coexist during
reprovisioning. After the two circuits are up, a bridge-and-
roll is performed to move the customer to the new circuit.
But when there is not enough bandwidth for the two flows
to coexist, the old circuit must be removed before the new
circuit can be set up, resulting in a customer outage. The aim
of LCAS is to make changing bandwidth a simpler and safer
task.

LCAS provides a control mechanism for the “hitless”
increasing or decreasing of the capacity in a VCG link to
meet the bandwidth seeds of the application. It also provides
the capability to temporarily remove member links that have
experienced a failure. The LCAS assumes that, in cases of
capacity initiation, increase, or decrease, the modification of
the end -to-end path of each individual VCG member is the
responsibility of the network and element management
systems. That is, LCAS provide a mechanism for bandwidth
reprovisioning, but it is not the controlling mechanism that
decides when or why the operation is made.

Features of LCAS include the ability to increase and
decrease VCG capacity in increments of its fragmented
bandwidths, hitless bandwidth changes, automatic removal
of failed VCG fragments without removing the entire VCG,
as well as dynamic replacement of failed fragments with
working fragments, interworking of LCAS VCG to non-
LCAS VCG:; that is, a LCAS transmitter can transfer to a
non-LCAS receiver and visa versa, unidirectional control of
a VCG, giving the ability to have asymmetrical connections,
and many other features. These features offer a list of
benefits that can greatly improve transport networking.
LCAS offers the flexibility to add and remove bandwidth
capacity within a VCG without affecting service or taking
down the VCG. This not only saves provisioning time, but
it eliminates the restriction of working during the “mainte-



US 9,461,942 B2

3

nance window.” In addition, less planning is needed,
because the engineer needs to find only the incremental
bandwidth for the circuit, rather than the additional band-
width required for a bridge-and-roll.

Another key benefit is that LCAS adds and deletes
bandwidth in VCG increments. This allows the provider to
offer a greater range of SLAs. Also adding to the SLA
feature list is LCAS’s ability to add bandwidth on demand.
Therefore, it will aid in the creation of customer-based
on-demand bandwidth changes—another advantage for the
service provider.

In addition to management provisioning and customer
invocations, LCAS can work in conjunction with signaling
protocols to dynamically change the flow of traffic in a
network. One application for this would be network-wide or
span-based load balancing. Furthermore, load balancing/
network recovery could be biased toward those customers
that pay for a higher availability. A load-sharing restoration
scheme potentially can be a component of a service that,
when combined with packet-level prioritization and conges-
tion-avoidance schemes, produces new types of enhanced
service offerings.

VCAT flexibility could also be enhanced with LCAS. This
will greatly improve the provider’s ability to provision
flexible and efficient SLLAs as well as to provide dynamic
TDM path restoration.

The SONET/SDH (“Synchronous Optical Network/Syn-
chronous Digital Heirarchy™) transport hierarchy was
designed to provide telecom carriers a practical means to
carry voice and private line services using time-division
multiplexing. In its initial design, SONET/SDH maintained
a fixed hierarchical structure with a limited set of data rates
(e.g. 51 Mb/s, 155 Mb/s, 622 Mb/s, 2.5 Gb/s, 10 Gb/s, 40
Gb/s). With the growth of the Internet and Enterprise data
networks, and as the range and type of traffic has expanded,
there is a need to make this structure more flexible and
powerful.

The introduction of a set of next-generation SONET/SDH
technologies, consisting of GFP, VCAT and L.CAS, trans-
forms the SONET/SDH transport network into a flexible and
efficient carrier of data as well as voice circuits, while
retaining the superior operations and management function-
ality built into SONET/SDH standards for performance
monitoring and fault isolation. GFP, VCAT and LCAS have
been developed in parallel and their main benefits are
realized when they are used in combination. They comple-
ment each other to provide efficient utilization of transport
resources and elastic bandwidth control. Components, ven-
dor equipment and test equipment based on these are becom-
ing mature and interwork to a high degree. Each of the three
cornerstone technologies mentioned above has unique con-
tributions to next-generation SONET/SDH.

Generic Framing Procedure—GFP (ITU-T G.7041 and
G.806) is a lightweight encapsulation method for any data
type providing flexible mapping of different bitstream types
into a single byte-synchronous channel. It provides efficient
encapsulation with fixed, but small overhead per packet.
There are two main types of GFP.

Frame-based GPF (GFP-F) stores and forwards entire
client frames in a single GFP frame. This is the preferred
method for most packet types.

Transparent GFP (GFP-T) provides low latency by trans-
porting block-coded signals for applications such as storage
area networks, or SANs.

Virtual Concatenation, VCAT (ITU-T G.707 and G.783),
is an inverse-multiplexing technique to combine arbitrary
SONET/SDH channels to create a single byte-synchronous

10

15

20

25

30

35

40

45

50

55

60

65

4

stream. Unlike continuous concatenation that needs concat-
enation functionality at each network element, VCAT only
needs concatenation functionality at the path termination
equipment. VCAT can transport payloads that do not fit
efficiently in standard STS-Nc or VC SPE sizes typically
supported by existing SONET/SDH NEs. VCAT function-
ality is only required only at Path Terminating Elements, not
each NE in the path. VCAT uses smaller bandwidth con-
tainers to build a larger bandwidth end-to-end connection.
The individual containers may be diversely routed, with
compensation made for differential delay between each
container.

Link Capacity Adjustment Scheme, LCAS (ITU-T
G.7042, G.806 and G.783), is a signaling mechanism to
dynamically and hitlessly adjust the size of a container
transported in a SONET/SDH Network with VCAT. It is an
extension to VCAT allowing dynamic changes to the number
of SONET/SDH channels in use and is carried in-band on
Path overhead bytes.

LCAS coordinates bandwidth adjustment on end-points,
assuming the Trail has already been provisioned. It also
includes optional failover recovery features.

At the edge of the SONET/SDH network, a device such
as a Multi-Service Provisioning Platform (MSPP) may exist
to adapt the Ethernet physical interface for transport in the
SONET/SDH network. The Preamble and Start of Frame
Delimiter in the MAC frame are removed and the remainder
of the MAC frame (including the Source and Destination
Addresses, Length/Type fields, MAC data, padding bytes
and Frame Check Sequence) is mapped into the GFP pay-
load. GFP overhead bytes are added and GFP frames are
assigned to VCAT groups (VCGs), which may take diverse
paths across the network. (Note that in the OIF World
Interoperability Demonstration, the SONET/SDH network
was comprised of multiple domains and multiple carrier labs
utilizing equipment from different vendors.) LCAS signal-
ing is intended to add or remove members of the VCG link
to adjust to the bandwidth needs of the application and
respond to failure or restoration of VCG member links. At
the network egress MSPP, the payloads from the VCGs are
demapped from GFP, reassembled in time sequence, multi-
plexed and transmitted on an Ethernet physical interface.

Testing for service adaptation features in the OIF World
Interoperability Demonstration focused on four areas:

Throughput of Ethernet Private Line services over

SONET/SDH infrastructure

Accommodation of partial-rate and full-rate Ethernet

transport by GFP and VCAT

Resilience of the adaptation to different network charac-

teristics (differential delays)

In-service reaction to increased/decreased bandwidth

demands and to network failure conditions with LCAS
These test cases demonstrated not only interworking
between different vendor equipment but also interworking
between the essential features of GFP-F, VCAT and LCAS.

As an example of an application of VCAT and LCAS,
illustrations of an Ethernet service that can be provided by
a VCAT system using LCAS are shown in FIGS. 1A-1D.
FIG. 1 illustrates an Ethernet system having service pro-
vided by VCAT and LCAS. The link between node A and
node Z transports Ethernet frames using a virtual concat-
enation group of three members, and can be any number of
members. The three separate LCAS protocols constantly
monitor each peer location, including LCAS-a of node R
talks with LCAS-a of node Z, LCAS-b(R) with LCAS-b
(2), ... LCAS-n(R) with LCAS-n(Z), and so on. The LCAS
protocol establishes the state machine and much of the



US 9,461,942 B2

5

configuration parameters for such a system, but it does not
specify particular implementations of components for per-
forming LCAS functions in the particular nodes. For com-
munication, each node would need a send and receive
component for transmitting and receiving data from CP1 and
CP2 for example, and multiple nodes are possible.

The CP1 sends an Ethernet signal having packets to the
node R, where it is adapted to the data traffic were the
Ethernet packets are processed according to a generic fram-
ing procedure (GFP). The frames are then segregated
according to a VCAT process.

Historically, packet-oriented, statistically multiplex tech-
nology such as IP or Ethernet, do not match well the band
with granularity provided by a contiguous concatenation.
VCAT is an inverse multiplexing technique that allows
granular increments of bandwidth and single VC-n units. At
the source node, VCAT creates a continuous payload equiva-
lent to X times the VC-n. The set of X containers is known
as virtual container group (VCGQG), and each individual VC is
a member of the VCG. Lower-order virtual concatenation
(LO-VCAT) used X times VC 11, VC 12, or VC 2 containers
(VC11/12/2 .. . XvXequals 1 ... 64). Higher-order virtual
concatenation (HO-VCAT) uses X times VC 3 or VC 4
containers (VC 3/4-X v, X equals 1 . . . 256), providing a
payload capacity of X times 48,384 or 149,760 kbit/s.

Referring to FIG. 1A a virtual concatenation operation, in
particular, an Ethernet service provided by VCAT/LCAS is
illustrated. The processor CP1 is connected to an Ethernet
connection where flow control is performed according to
Ethernet protocol. According to the new protocol, node R
receives the Ethernet signal in a generic framing procedure
for traffic adaptation followed by payload segregation
according to virtual concatenation operations. Traffic control
is performed according to an LCAS protocol before the node
r exports the data via a cross bar switch, here shown as a
legacy STH. The Ethernet frames are appended to VCAT
member information as illustrated and are transported to a
node Z via the legacy STH. Node Z similarly configured as
node R, is configured to receive the data via the LCAS
operation protocol and payload aggregation is performed to
reconfigure the data for use by controller CP2 receiving
Ethernet signals. The flow control is similarly operated or
performed via flow control of the Ethernet protocol. For
telecommunication, each node has the ability to send and
receive the Ethernet signals. With virtual concatenation, the
legacy STH has the ability to increase its bandwidth and
efficiency with LCAS operations performing the traffic con-
trol.

Referring to FIG. 1B, virtual concatenation is illustrated
graphically where the contiguous payloads VC 3/4V, for
example, are broken down into X segments, where each
segment has multiple sequences and associated MFI mem-
bers. Each segment has X multiples of VC 3, virtual con-
catenation groups, where each segment corresponds to a
particular MFI number and sequence. As can be seen, the
virtually concatenated groups (VCGQG) are transmitted indi-
vidually.

Referring to FIG. 1C, a VCAT channel managed by LCAS
is illustrated. Between node A and node B, signals are
transferred, Tx and received, Rx, via VCGs, virtual concat-
enated groups in a pipeline manner. Each node has a source
and a sync, and each also has corresponding LCAS con-
figurations. The LCAS helps network operators efficiently
control NG SDH connections established at VCAT sites. The
use of LCAS is not compulsory, but improves VCAT man-
agement. As can be seen, the member states between the
source and sync correspond with 4/idle, add/fail, norm/ok,

5

10

15

20

25

30

35

40

45

55

60

65

6

DNU/fail, and remove/ok. As also can be seen, the trans-
mission channels A, B, C, and D are shown as channels in
a transfer mode, and the corresponding channels H, 1, J, and
K are illustrated as channels that transmit from the source to
the sync. From node B to node A.

Referring to FIG. 1D, a K4 multi-frame (VCAT and
LCAS codification), is illustrated. The lower order path
overhead is shown in position to 17-20 within the K4
multi-frame. Also, in the multi-frame is the MFI number, the
sequence number, control number, control bit, RS-ACK, an
MST number and the CRC-3. Also, the K4 super frame is
illustrated with corresponding MFI number sequence num-
bers control and CRC-3 numbers. (SQ-sequence indicator in
the VCG [0 . . . ]). MFI multi-frame count indicator [0 . . .
31]. The K4 super frame has a time length of 512 ms. K4 is
part of the LO-PD overhead and is repeated every 500
milliseconds. 32 bits are sent in a complete multi-frame,
which takes 16 milliseconds to repeat (500x32=16 ms). The
bit-2 super frame is made up of 32 multi-frames and takes
512 milliseconds to repeat. On the high order side, referring
to FIG. 1E, the H4 multi-frame is illustrated in VACT and
LCAS codification. H4 is part of the HO-PO (high order
overhead). A4 is repeated every 125 milliseconds. 1-6 byte
multi-frames takes 16 milliseconds. A complete multi-frame
of 4096 bytes takes 512 ms to repeat (123x4096=512 ms).

Many attempts at achieving a structure that is flexible and
powerful have bees attempted, however, the division of
functions between the hardware and software to date in
conventional systems has been inequitable. In particular,
when certain processes are required, such as changing
membership and size of a group on the fly, the operations in
the process tie up the membership activity.

For example, in a sonic based system, the ITU in space
G707 updated the V-4 requires virtual concatination. For
example, if a 7 megabit channel is required, we result
desired may be 7 . . . 1 megabit channels. As a result, there
is need to perform the LCAS addition. There is a need to
change the size and membership of the group on the fly
according to the standard requirements. In conventional
systems, this process is very long, and requires very high
demands on the processors. The processes that are demand-
ing, for example, are check configuration, interrupts, com-
mands, failures, resets, and other operations. Given the new
standard requirements, systems will be burdened by real-
time process requirements.

Virtual Concatenation (VCAT) enables transport pipes to
be “right-sized” for various data payloads by allowing
SONET/SDH channels to be multiplexed in arbitrary
arrangements. VCAT breaks down data packets and maps
them into the base units of TDM frames; e.g., STS-1 (51
Mb/s) for SONET, and AU4 (155 Mb/s) for SDH. This data
is then grouped in multiple data flows of varying size to
create larger, aggregate payloads optimally sized to match
available SONET/SDH pipe capacity. VCAT is applied at
the end-points of the connections, which permits each chan-
nel used to be independently transmitted through a legacy
transport network. Data is typically encapsulated using GFP.
VCAT (defined in ITU-T G.707), combines a number of
small SDH/SONET virtual-container (VC) payloads to form
a larger Virtual Concatenation Group (VCG). VCs come in
three different sizes—with VC-12 providing about 2 Mbit/s,
VC-3 about 50 Mbit/s and VC4 about 150 Mbit/s—so that
an 8 Mbit/s data flow, for example, would be oracle up of
four VC-12s. Creating these finely tuned SDH/SONET pipes
of variable capacity improves the scalability and efficiency
of data handling while also controlling quality of service
(QoS) and customer service-level agreements. The VCG is



US 9,461,942 B2

7

treated as a group of independent VCs, which mesas that
each VC can exploit any available time slot across an
end-to-end path and the VCG is reformed at the other end.
For example, the 8 Mbit/s payload described above can be
split across four VC-12s anywhere within the overall SDH/
SONET signal.

Equally important for the flexibility of data transport over
SDH/SONET is the Link Capacity Adjustment Scheme
(LCAS), described in ITU-T G.7042, which enables the
payload of the VCG to be adjusted by adding or removing
individual VCs. The LCAS recommendation provides the
mechanism for signaling the demand change between the
two end points, without packet loss, as the payload capacity
is adjusted.

Combined with Link Capacity Adjustment Scheme
(LCAS, ITU-T G.7042), VCAT is a cost-effective, elastic
mechanism that allows data services to be overlaid on an
existing optical transport network. These standards allow a
carrier to maximise revenue while using already existing and
deployed technologies. This Standards-based approach of
combining Ethernet and traditional voice and data services
over one transport infrastructure has become increasingly
popular as service providers are challenged to deliver the
same (or increased) services using multiple delivery mecha-
nisms. These requirements are particularly critical for ser-
vice areas outside those traditionally covered by metro
packet networks. See:  http://www.haliplex.com.au/
multis1600.html.

This causes a significant problem with conventional sys-
tems and related solutions. In such systems, the division of
process function between hardware and software is inequi-
table. Since such systems were set op merely to transmit,
receive and otherwise exchange merely voice data, the
efficiencies required for more modern transmission of data
were not realized. In network systems, quickly managing
membership linkage activity, including resolving disparate
membership connections, are a necessity for systems too
efficiently work. For example, if a member required a
7-megabit channel, but receives seven 1-megabit channels,
then LCAS addition would need to be performed in order to
change the size and membership of the group. This is
addressed in the ITU-T G7042. According to the new ITU
standards requirement, this must be performed on the fly, or
seamless. The standard, however, does not address exactly
how this is to be done. This is very processor heavy, where
configurations need to be checked, commands need to be
interpreted, and programming must be robust in order to
effectively and efficiently make the link, and to provide the
VCAT required of the new standard. A simplified LCAS
source and sink state machine is illustrated in FIG. 1F.

Therefore, there exists a need in the art for a system and
method of performing LCAS operations in the context of a
SONET based system that provides a more efficient balance
between hardware and software operations in network com-
munications, and that will be able to perform LCAS opera-
tions in a manner that is not burdened by real-time process-
ing requirements. As will be seen, the invention provides
such a system and method in as elegant manner.

THE FIGURES

FIGS. 1A-F are illustrations of LCAS and related net-
works of the background.

FIG. 2A is a diagrammatic view of a system configured
according to the invention.

FIGS. 3A-G are illustrations of Source and Sink configu-
rations according to the invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIGS. 4A-E are illustrations of a system and method of
alignment according to the invention.

FIG. 5 is an illustration of an ANA.

FIG. 6 is an illustration of an LVC.

FIG. 7 is an illustration of a DSQ.

FIG. 8 is an illustration of a VCT_TX.

FIG. 9 is an illustration of a Buffer system.

FIG. 10 is an illustration of a system for calendar rounds
based on Channel type.

FIG. 11 is an illustration of a Buffer system.

FIG. 12 is an illustration of a VCT an aligner.

FIG. 13 is an illustration of how calendars are generated
by the VCT aligner.

FIG. 14 is an illustration of how reset and failure modes
work together for accepted and non-accepted members.

FIG. 15 is an illustration of a Main FIFO.

FIG. 16 is an illustration of a 64 byte word.

FIG. 17 is an illustration of a Main FIFO in a receive
circuit.

FIG. 18 is an illustration of how states are set.

FIG. 19 is an illustration of a state diagram for LCAS.

FIG. 20 is an illustration of how main FIFOs are distrib-
uted.

DETAILED DESCRIPTION

The invention is directed to a novel system and method
for performing Local Centre Authorization Service (LCAS)
in a network system that overcomes the shortcomings of the
prior art. The system is multi-facetted and provides many
features to a system for VCAT transmissions, particularly,
but not limited to those providing LCAS functionality.
Those skilled in the art will understand that the embodi-
ments below can be used in any system or method where the
underlying functions and components may be useful.

One embodiment of the novel system provides unique
configuration of alignment, sequencing and de-sequencing
of data within a virtual concatenation process. Such a system
and process could be used in a SONET/SDH transport
processor or the like, but is not limited to any particular
network protocol. In particular, the system and process could
be used in a high and low order framer and processor with
virtual concatenation and LCAS functionality. Those skilled
in the art will understand that the spirit and scope of the
invention reaches to broader applications, and is defined in
the appended claims and their equivalents.

Another embodiment of the invention presents a novel
balance between hardware and software functions in such a
system, where burdensome processes are removed from the
process and performed outside the operational path. This
allows the system to perform the LCAS in a more efficient
manner, and speeds up the process in general. The invention
is described in the context of a system and method of
performing LCAS operations in the context of a SONET
based system, but those skilled in the art will understand that
the invention is actually broader in scope, and extends to any
system that would benefit from a more efficient balance
between hardware and software operations in network com-
munications and other applications.

In one embodiment of the invention, a processor is
configured to add and delete members in an efficient manner,
where the processor overhead is similar to conventional
hardware based state machines. The commonalities are
similar configuration checking, command interpretation and
device programming. According to the invention, however,
the LCAS processor configured according to the invention
operates at significantly reduced processing time and



US 9,461,942 B2

9

demands no significant real-time processor requirements. In
steady state or normal operation, there is no processor
loading, and the processor is only required during configu-
ration changes. Thus, the invention provides a solution that
overcomes the shortcomings of the prior art by greatly
reducing the harden on the processor during steady state
operations. For example, in adding or deleting a member, for
both source and sink sides of the operation, the system only
needs to respond to two interrupts (in an add operation) or
one interrupt (in a delete operation). Also, in practice, the
processing time per member in such an operation can be less
than one millisecond. The total LCAS Protocol Completion
time as defined by the ITU standard is minimal, and this can
be done independently of a particular implementation (HO:
High Order, LO: Low Order), for example:

Best Case Worst Case
HO 8 ms + 4XProp Delay 70 ms + 4XProp Delay
LO 128 ms + 4XProp Delay 352 ms + 4XProp Delay

If a failure event occurs, the invention provides a response
to in interrupt within 100 microseconds for a failed member.
The LCAS failure rates for interrupts can be, for LO, every
32 ms up to 8 failure member status messages received, and,
for HO, every 2 ms up to 8 failure member status messages
received. Over all, the processor execution time is substan-
tially insignificant with respect to LCAS protocol execution.
Alignment

The invention further provides an alignment system for
performing LCAS, where a data aligner configured to align
channels of input data. In one embodiment, the aligner
includes a write manager configured to receive input data
into a first memory. The write manager then writes bytes
from multiple channels into a multi-channel transparency
module (MCT) having a second memory. The MCT is
configured to store input data received from the write
manager that in the second memory, keeping data separate
for separate channels. The alignment system further includes
a read manager configured to read input data stored in the
second memory into a third memory in an aligned manner.
In one embodiment, the read manager is configured to read
channel data from a group of channels that make up a
virtually concatenated group (VCG) when all data is
received from the VCG. In a system configured to perform
LCAS type processes, the different individual virtually con-
catenated (VC) channels of a group arrive at the receive end
of the transmissions at different times. According to the
invention, the read manager allows the channel data to fill
space in the MCT until all group member data arrives. At
that point in time, they are ready to be read out, then sent to
a subsequent process, such as de-sequencing. It is also
possible to perform de-sequencing as a part of the alignment
process. In a preferred embodiment, the alignment is per-
formed separately from the change of sequence of the
individual channel data.

Sequencing and De-sequencing

The invention further provides a novel system and method
for sequencing channel data from VCGs. The system
includes a sequencing module configured to reorder data
bytes according to a predetermined transmission slot order
of member channels of a VCG and to process dynamic VCG
membership changes. The system further includes at least
two buffers configured to enable the module to perform a
double buffering process to perform VCG membership
changes to support LCAS. A read manager is configured to

10

15

20

25

30

35

40

45

50

55

60

65

10

read membership change data from one buffer and a write
manager configured to write membership change data to
another buffer, wherein the write and read functions of the
read and write managers alternate between the two buffers.
In one embodiment, the byte capacity of each of the buffers
is equal to or greater than the number of members of the
VCG.

Systems configured according to the different embodi-
ments invention, which can be utilized individually or in
combination, can greatly benefit in many ways. Systems can
provide highly integrated voice/data-capable low-cost fixed
form factor next-generation, SONET/SDH-enabled Cus-
tomer Premise (CPE) systems, highly integrated advanced
Ethernet service delivery solution for next-generation,
SONET/SDH-enabled MSPP line cards, network elements
supporting Ethernet-Over-SONET (EOS), Packet-Over-
SONET, (POS), and TDM services, service card/Line card
for intelligent (re)aggregation of data traffic into SONET/
SDH circuits, data and/or Circuit Grooming systems, sup-
port of enhanced Ethernet E-line, E-LAN/VPLS, PWE data
services, and legacy, TDM services and many other appli-
cations.

The invention allows processors to enable system plat-
forms to deliver these services while reducing the transport
costs associated with the service delivery. Additionally, by
utilizing low-cost Ethernet interfaces for universal client
access, hardware and software solutions configured accord-
ing to the invention can enable service rates and other SLA
properties. These can be easily modified on demand at the
initiation of the client autonomously without expensive
truck rolls.

With the invention’s highly integrated solution, system
providers can enjoy additional shipment volumes due to the
cost/service/value points enabled by the invention. Service
providers can enable advanced service models increasing
their monthly revenue opportunity (with CAPEX expendi-
ture that is about the same as the monthly premium that is
enabled) while reducing their OPEX through service mul-
tiplexing techniques. End users can take advantage of more
service options. The invention provides flexible interface
options including Gigabit Ethernet, 10/100 Ethernet, pro-
tected SONET/SDH (optical or MSPP fabric), a PDH expan-
sion bus, and up to STS-48 bandwidth, with full SONET/
SDH and packet processing. It optimizes the transport of
Ethernet Services over the existing SONET/SDH infrastruc-
ture utilizing GFP, Virtual Concatenation and LCAS. It also
provides a carrier class solution for the delivery of Ethernet
services over Ethernet carrier networks.

A system configured according to the invention enables
the delivery of high-bandwidth Ethernet Virtual Private line
(E-Line), Virtual Private LAN (E-LAN and VPLS), and
Pseudowire (PWE) services, allowing a broad range of
service profiles. It also enables Virtual Switching, wherein
many virtual switches service multiple revenue generating
E-LANs, each of whose bandwidth, port, and statistics
resources are functionally and managerially isolated.

In one embodiment of the invention, the system includes
an LCAS state machine configured to store and manage state
date related to the state of system LCAS hardware. A virtual
concatenation (VCT) module is configured to perform vir-
tual and standard concatenation processes in the system,
particularly in accordance with ITU standards that call for
such processes. The VCT module includes a packet engine
interface configured to transmit, receive or otherwise
exchange packet data with the packet engine via SONET/
SDH logical ports. The VCT module further includes a cross
connect interface configured to transmit, receive and other-



US 9,461,942 B2

11

wise exchange SONET/SDH traffic having data mapped
therein with the internal SONET/SDH Cross Connect. The
system VCT may be configured to exchange (transmit)
SONET/SDH traffic having data mapped therein with the
internal SONET/SDH Cross Connect via an internal STM-
16 interface.

HW System

Referring to FIG. 2A, a diagrammatic view of a hardware
system for a receive channel configured according to the
invention is illustrated.

Referring to FIG. 2A, a configuration of receiving channel
of an LCAS configuration is illustrated. In operation, data
202 is received by the aligner 204 in the system 200, which
aligns the data members. In a separate process, the
sequencer 206 reorders the sequence of the members of the
VCG according to the MFI information. This is all con-
trolled by the LCAS control packet processing 208, which
receives the same data as the sequencer and controls the
desequencing process. The output is then sent to the buffer
210 and then to the multiplexer 212. Also received into the
multiplexer is an output from the packet path overhead
(POH) processing for the non-VCAT transmissions from
module 214.

According to the invention, the hardware and software in
the LCAS configuration is divided in a novel manner that
allows optimum efficiency, LCAS is defined in the ITU
standard mostly in software. In practice, however, the exclu-
sive use of software in application has been found to be too
slow. It has been discovered that a better combination of
hardware and software provides a better result. Generally,
the data related to control paths are controlled by software.
Hardware is used only when needed, such as in data path
transmissions.

According to the invention, substantially all functions of
the overhead data is generated by software. Hardware makes
sure changes occur synchronously. The process has essen-
tially placed all non-timing critical steps in software, where
hardware provides a synchronization of control paths and
data paths. Thus, hooks and hardware are configured for
software to put data in and take data out.

When considering solely the control path, the control of
the control path is exclusively the domain of software. For
inserting into a control packet, hardware hooks allow soft-
ware to insert the control packet. In extraction, hardware
hooks allow software to read outcast control packets in data
streams. In essence, software defines when change must
occur, and hardware determines when the change can occur
and make the changes. Thus, hardware provides the syn-
chronicity.

Considering the control path and data path, in the receive
side of the configuration, software configures hardware such
that data path size, number of members, follows the received
overhead in LCAS control packet. On a transmission side,
still considering the control and data path, software directs
hardware to change first the data path size and the trans-
mission overhead in the LCAS control packet. These two
functions are done synchronously by hardware, thus the
software and hardware divide.

Considering internal resource synchronization, different
virtually concatenated groups have different sizes. There-
fore, some buffers are sized to different group sizes and
software controls the hardware to set the buffer size. Simi-
larly, resource allocation can by performed using this hard-
ware software divide, where software defines the resource
allocation, and hardware respond accordingly. In buffer
swapping synchronization, software directs hardware to

10

15

20

25

30

35

40

45

50

55

60

65

12

change buffers used by a particular VC group. Hardware
performs change at the exact appropriate time.

Those skilled in the art will understand that the software
can be external or internal in a memory or external or
internal to the CPU. It can be performed on the same line
card or different line cards. Also the software can be located
on separate or similar dies. Therefore, the invention is not
limited to any particular configuration where software is
used internally or externally on a CPU or on a particular chip
or chip set.

Referring to FIGS. 3A-G, diagrammatic flow diagrams
illustrating the hardware and software split utilized in one
embodiment of the invention is illustrated. FIGS. 3A
through 3G architectural and system flow diagrams are
illustrated to help describe the operation of the system
according to the invention. According to the invention, the
LCAS transaction is broken down into a sequence of auto-
matic operations, with hardware configured to carry out each
automatic operation and where software is responsible for
issuing the appropriate automatic operations for each trans-
action.

Referring to FIG. 3A, a source/sync LCAS system con-
figured according to the invention is illustrated. The system
includes a first driver of the source 302, hardware control
304 of the source, hardware control of the sync 306, and
software driver of the sync 308. The operational steps are
illustrated in serial sequence steps and will herein be
described.

Referring to FIG. 3B, in operation, when new member
310 from NMS is added, the process proceeds to Step 312
where the system is in idle. This is the state of the operations
when a new member is added. In Step 314, the control is set
add, where a mew member is being added, and the sequence
number is incremented by 1, where a sequence number
equals N plus 1. In Step 316, the LCAS control is sent. In
Step 388, the timer is set. In Step 320, the add sequence is
initiated, and the controls are sent via line sequence paths
326 and 328, respectively. In Step 328, the check sequence
and check control operations are performed. In Step 330 the
control is set to norm and the sequence number is set to N.
In Step 332, the control is set to end of sequence (EOS) and
a sequence number equals H plus 1. In Step 334, the
operation to send LCAS control is initiated and in Step 336
the payload is sent. In Step 338, the payload is normalized
and sent to hardware components 304. In the hardware
system, the control word generator/extractor receives the
payload information in preparation for transmitting the
payload. In Step 340, the payload sequencer establishes the
sequence of the payload, packets 342. The control word
generator/extractor, in an odd number sequence from the
source, generates and then send a control word to packets
342 via path 344 for transmission. In the reverse direction,
path 346, the control word is extracted by the control word
generator/extractor 324. The packets are then transmitted via
path 343 and are received as packets 348 at the sink 306.
These packets are received by the control word generator/
extractor 350 of the sink via path 352. If the packets were
being sent back to the source hardware via path 343, a
control word generator/extractor would be generating a
control word and attaching it to the packets via path 354. The
control word generator/extractor then sends the control word
received from the source hardware to the software driver
308. First, the control word from control word generator/
extractor 350 is sent to the diver 308 to OK 355 of path 356
to determine where the membership addition is OK at 355.
The check sequence and check control operations are per-
formed in Step 366. The sequence then proceeds to Step 364,



US 9,461,942 B2

13

where the RS-ACK flip is initiated. Once these operations
pass, the procedure proceeds to Step 362 indicating a
received payload. If adding a member 359, the idle Step 372
is initiated and the operation, works in reverse back to the
driver 302. After the idle Step 372, the check sequence and
check control operations are initiated in Step 370 and the
send LCAS control is subsequently initiated in Step 368 and
the operation works in reverse.

Referring to FIG. 3C, a more detailed description of an
LCAS ad transaction sequence is illustrated. In operation,
the process drivers 302 and 308 operate with overhead that
substantially replaces conventional hardware based state
machines. According to the invention, the configuration
checking can be common for both the source and the sink.
Furthermore, a command interpretation and device program-
ming is also common for both. The LCAS state machine
represents less than 20% of the total processing time and
introduces no additional significant real-time requirements
of processing. In steady state operation, there is no process
or load during normal operation, and, furthermore, the
processor is only required during configuration changes. In
adding or deleting a member, both source and sink, there are
significantly reduced operations. When adding a member,
only two interrupts need to be responded to. When deleting
a member, only one interrupt is required. In the final
analysis, less than one millisecond total processing time per
member is required. This is the minimum total LCAS
protocol completion time defined by the LCAS standard. As
a result, the process of execution time is a significant respect
to LCAS protocol execution. Still referring to FIG. 3C, a
flow diagram illustrating the LCAS add transaction
sequence example is illustrated. In Step 380, the source
initiates the transaction by setting sending a control packet
(add) to add on the new member. In Step 382, the sink
detects a change in control and sends a member status
change (MST) and in Step 384 adds a member by setting
control=EOS on the new member and control=NORM on
the previous last member, if any exists. In Step 386, the sink
detects the change in the control and toggles RS-ACK, or RS
sequence acknowledgment.

Referring to FIG. 3D, the pathways associated with the
adding a new member process is illustrated in more detail,
with reference to FIG. 3A. In operation, pathway 1 begins at
idle Step 312 and proceeds to the control word generator/
extractor 324 via path 388 where a control word is generated
for packets 342, which are then transmitted to the sink
hardware 306 delivering packets 348 in the sink 306. The
control word extractor then extracts the control word, adding
a new member, and then proceeds to idle Step 342, still via
path 388.

Referring to FIG. 3E, Step 2 illustrates the operation
where the sink detects the change in control and sends a
command MST equals OK. This is done via path 390. The
add number 372 of the driver 308 sends a command via path
390 to control word generator/extractor 350 via path 390,
which sends the control word to the data packets generated
348. These packets are transmitted via path 390 to give
packets 342. The control word extractor 324 then extracts
site command of MST equals OK and then transmits that the
ad operation module 320 to complete the ad sequence.

In Step 3F, from the add sequence module 320, the
process proceeds to Step 328 and proceeds via path 392
where the source detects the MST change and adds a number
by setting control=EOS on the new member and
control=NORM on the previous member, if any exists. Still
continuing down path 392, the process proceeds simultane-
ously to the control word generator/extractor 324 and pay-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

load sequencer 340 to generate packets 342 to continue via
path 392 to the sink hardware 306. The control word
generator/extractor then extracts the control word,
control=EOS, and the process proceeds to Step 358 where
the new member is OK’ed.

Referring to FIG. 3G, the final Step, where the sink
detects a change in control and toggles an RS-ACK, or
acknowledgment command, this process proceeds down
Step 394, beginning where the check sequence and check
control proceeds down path 394 to the control word gen-
erator/extractor 350 extracts the control word, the acknowl-
edgement command, and sends it the data packets 348 via
path 394. These data packets are received as data packets
342 in the source hardware 304, and the process then
proceeds to the control word generator/extractor of the
source hardware to extract the acknowledgment command
and the process then returns to the NORM process.

1.1 Atomic Operations
1.2 Reverse Control Information

According to the invention, the atomic operations are
primarily performed in software, with hardware responding
to software commands, greatly optimizing the system.
Regarding the reverse control information, and referring to
FIG. 3A, the sink 303 operations, located at the sink or
receive side of the LCAS operations, govern these opera-
tions. At the sink of an LCAS connection, Orion has the
capability of inserting reverse control information, such as
member status (MST) and re-sequence acknowledgment
(RS-ACK). This information is configured by software.
Furthermore, when this information is changed by software,
the change occurs at the same time on all members of a
virtually concatenated group (VCG). The change is also
synchronized to the beginning of a new LCAS control
packet.

At the source of an LCAS connection, the source extracts
reverse control information, such as MST and RS-ACK,
from the incoming LCAS control packet. The source also
performs CRC checks to verify the validity of this data. If
this information changes, the source processor will interrupt
software and allow software to read the new value received.
1.3 Forward Control Information

Regarding the forward control information, at the source
of an LCAS connection, the source processor inserts for-
ward control information, such as sequence number (SQ)
and control word (CTRL). This information is configured by
software. When software changes this information, the new
control data must be written in the next LCAS control
packet. Furthermore, the datapath changes must be synchro-
nized to the control path changes. The new data path
configuration defined by the new SQ and CTRL values must
occur exactly at the beginning of the control packet follow-
ing the control packet where the new SQ and CTRL values
are written.

At the sink of an LCAS connection, the sink processor
extracts forward control information, such as SQ and CTRL,
from the incoming LCAS control packet. The sink processor
also performs CRC checks to validate this data. If a new SQ
or CTRL value arrives, the sink processor will interrupt
software and present the new received value. If the channel
has been configured by software to be in “accepted” mode,
then the sink processor will use the new SQ or CTRL
information from that channel to control the extraction of the
actual data. The data path configuration change is synchro-
nized so that it takes place exactly as the beginning of the
control packet following the control packet with the new SQ
or CTRL value.



US 9,461,942 B2

15

Referring to FIGS. 3B-C, an example of operations illus-
trating the hardware and software split are shown.
HW/SW Division Spec
2 Overview

This document describes the hardware and software inter-
actions required for various LCAS scenarios based on the
register model provided in LCAS/VCAT register docu-
ments. Reflecting the asymmetric nature of LCAS, the
operations that software needs to perform are discussed
separately for the sink and source side separately.

The following scenarios are covered in this document:

Sink Side

Create VCG

Delete VCG

Provision New Member(S) To VCG

De-provision Member(s) From VCG

Increase VCG Bandwidth

Decrease VCG Bandwidth

Decrease VCG Bandwidth Due To Fault

Change Reverse Control Information Extraction Con-
figuration

Source Side

Create VCG

Delete VCG

Provision New Member(s) To VCG

De-provision Member(s) From VCG

Increase VCG Bandwidth

Decease VCG Bandwidth

Decrease VCG Bandwidth Due To Fault

Change Reverse Control Information Insertion Con-
figuration

This document does not cover detailed analysts of error
scenarios and assumes that there are no errors during con-
figuration related transactions. It is intended to help with
understanding of how to use the LCAS configuration and
status interface provided by Orion to implement LCAS
protocol functionality in software.

3 Sink Side Scenarios

3.1 Create VCG

NMS specifies the following operations to the sink node
when it wants to create a new sink VCG:

The receive LPID to be used for this sink VCG

The channel type of the VCG

The identities of the receive channel(s), if any, that should

initially be provisioned as members of this sink VCG

For each initial member channel, if any, whether or not

LCAS reverse control information shall be extracted
from it and if so the transmit LPID of the local source
VCG it would apply to. It is possible that different
member channels carry reverse control information for
different local source VCGs. It is also possible that
reverse control information is sot extracted on some or
all of the initial member channels.

The following assumptions are made:

The receive port LPID is not in use (i.e. RX_SK_SW_

CFG_EN bit for this receive LPID is set)

The initial member channels, if any, are of the same type

as the sink VCG

The initial member channels, if any, are not in use (i.e.,

their RX_CH_SW_CFG_EN bits are set) and they have
originated from the remote source node

Software performs the following configuration steps to
create the sink VCG:

1. Set the RX_SK_VCAT_EN and RX _SK_LCAS_EN

bits for the receive LPID assigned to the sink VCG

10

15

20

25

30

35

40

45

50

55

60

65

16

2. Set the TX_SK_LCAS_INS_MST field of the sink
VCG to FAIL for all possible sequence values (i.e. set
this field to all ones)

3. Take the sink VCG out of reset by clearing its SK_SW_
CFG_EN bit.

If any receive channels are specified to be initially pro-
visioned into the sink VCG, the remaining configuration
steps would be the same as those that would be performed
when provisioning these receive channels info an existing
sink VCG.

3.2 Delete VCG

NMS specifies the following operations to the sink node
when it wants to delete a sink VCG:

The receive LPID assigned to this sink VCG

We assume that before a sink VCG is deleted all of its
members would have been de-provisioned. In this case,
software needs to perform the following operations:

1. Put the receive LPID into reset by setting its SK_SW_

CFG_EN bit.

3.3 Provision New Member Channel(s) Into VCG

NMS specifies the following configuration parameters to
the sink node when it wants to provision new member
channels into an existing sink VCG.

The receive LPID assigned to this sink VCG

The identities of the receive channel(s) that should be
provisioned as new members of this sink VCG

For each new member channel, whether or not LCAS
reverse control information shall be extracted from it
and if so the transmit LPID of the local source VCG it
would apply to. It is possible that different member
channels carry reverse control information for different
local source VCGs. It is also possible that reverse
control information is not extracted on some or all of
the new member channels.

The following assumptions are made:

The sink VCG is already active; i.e. the RX_SK_V-
CAT _EN and RX_SK_L.CAS_EN bits for the receive
LPID are already set and the RX_SK_SW_CFG_EN
bit of the receive LPID is not set.

The new member channels are of the same type as the sink
VCG

The new member channels are not in use (i.e., their
RX_CH_SW_CFG_EN bits are set) and they have
originated from the remote source node

Software performs the following operations to prevision
the new member channels:

1. Check that differential delay can be compensated with
these channel(s) as members. Details of this is dis-
cussed in the VCAT scenarios document.

2. Configure each new member channel as follows:

Set its RX_CH_LPID field to the receive LPID
assigned to the sink VCG

Clear its RX_CH_VCAT_ACCEPT bit

If the channel will be used to extract LCAS reverse
control information, then set its RX_CH_LCAS_
REV_EXT_SO_LPID field to the value provided
and set its RX_CH_LCAS_REV_EXT _EN bit

3. Take the new member channels out of reset by clearing
their RX_CH_SW_CFG_EN bits. The order for this is
not important since none of them will have their
payload added before a handshake.

4. Wait until differential delay compensation is done on
the sink VCG with the new member channels included.
This can be determined via observation of the
RX_CH_VCAT_RD_STATE bits of all (not just the
new one) the member channels. When all the member
channels have this bit set differential delay compensa-



US 9,461,942 B2

17

tion is done. Software can poll these bits or use their
associated interrupts for this purpose.

5. Following differential delay compensation, wait for one
multi-frame (duration depends on if the sink VCG is
low or high order) or longer to ensure that all the
channels processed at least one LCAS control packet.

6. Read the RX_CH_LCAS_CTRL, RX_CH_VCAT_SQ
and RX_CH_LCAS_CRC_ERR fields of all the new
member channels
Since the NMS performs provisioning of the new
member channels on the source side before the sink
side, once differential delay compensation is achieved
on the sink side, the sink side should be seeing IDLE
control word on all the new member channels. The
sequence number of these channels should be set to a
value higher than the current maximum sequence used
by the sink VCG.

However, the correct configuration or behavior of the
NMS or the source side is not guaranteed, so the
software should check that IDLE is being received as
the control word and the sequence numbers received
are higher than the current maximum of the sink VCG.
If any errors are defected, the whole provisioning
transaction shall be canceled by putting all the member
channels into reset and NMS shall be informed of the
failure.

The RX_CH_LCAS_CRC_ERR fields should be read
to make sure that the control word and the sequence
number fields read are valid. We assume that there were
no CRC errors and the control words and the sequence
numbers are as expected.

7. Clear the RX_CH_VCAT_SQ_CHG bits of all new
member channels by writing one to them
This step is necessary because the reset value of
RX_CH_LCAS_CTRI._SQ field is zero. When Orion
processed the first control packet on a new member
channel, the sequence number in that control packet
would have been different than zero, causing the
RX_CH_VCAT_SQ_CHG bit to be set.

At this point the provisioning transaction has completed
successfully from the sink VCG point of view and the
NMS can be informed of success.

3.4 De-provision Member Channel)s) From VCG

NMS specifies the following configuration parameters to
the sink node when it wants to de-provision member chan-
nels from an existing sink VCG.

The receive LPID assigned to this sink VCG

The identities of the receive channel(s) that should be
de-provisioned

The following assumptions are made:

The member channels are already provisioned members
of the sink VCG but they are currently not used (i.e.
receiving IDLE as the control word with their
RX_CH_VCAT_ACCEPT bits not set)

Software performs the following operations to de-provi-

sion the new member channels:

1. Put the new member channels into reset by setting their
RX_CH_SW_CFG_EN bits.

At this point the de-provisioning transaction has com-
pleted successfully from the sink VCG point of view and the
NMS can the informed of success.

3.5 Increase Bandwidth of VCG

It is assumed that the remote source can add multiple
member channels simultaneously. Therefore, the sink side
will wait till it sees ADD control word on ah member
channels that are to the added before sending MST=0K
status for any of them. This way the sink side wilt toggle

10

15

20

25

30

35

40

45

50

55

60

65

18
RS_ACK only once after it sees NORM/EOS on all the
member channels being added.

If the remote source is capable of adding only one
member channel at a time, then addition of multiple mem-
bers with such a source should be broken into many distinct
transactions from the sink node perspective. Since this is just
a special case of multiple member channel addition, this
would not make any difference to an Orion based sink.

NMS specifies the following configuration parameters to
the sink node when it wants to add new members to a sink
VCG:

The receive LPID assigned to the local sink VCG

The identities of the member channel(s) to be added

The following assumptions are made:

The member channels are already provisional members of
the sink VCG but they are currently not used for
carrying payload (i.e. receiving IDLE as the control
word with their RX_CH_VCAT_ACCEPT bits not set)

Software performs the following operations to add the
member channels:

1. Wait until each member channel to be added is receiv-
ing ADD control word or a protocol error or a timeout
occurs.

Since we assumed that the remote source node adds all
of the member channels simultaneously, software
would wait to receive ADD on all member channels
before sending MST=OK to any one of them.
Software can determine when all channels are receiving
ADD control word via observation of the RX_CH_L-
CAS_CTRL fields of the member channels to be added.
Software can poll these fields or use their associated
interrupts for this purpose.

If a timeout occurs before ADD control word is seen on
all member channels to be added, software shall cancel
the transaction and report the failure to the NMS.
When software determines that the received control
word has changed (either via polling or using
RX_CH_LCAS_CTRIL_CHG interrupt) on a member
channel to be added, it should check that the new value
is ADD. Also, software should read its received
sequence number so that sanity of the sequence num-
bers assigned by the source node to these member
channels can be verified. They should form a contigu-
ous sequence starting from one higher than the largest
sequence masher used on the local sink VCG currently.
Any protocol errors shall cause the cancellation of the
transaction and importing of failure to the NMS.

2. For each member channel to be added, set its
RX_CH_VCAT_ACCEPT bit

3. Set the shadow MST bits for the sequence numbers
corresponding to the member channels to be added in
the TX_SK_LCAS_INS_MST field of the sink VCG to
OK.

It is assumed that the shadow MST bits for other
members remain the same as the active ones.

4. Toggle the TX_SK_ILCAS_REV_SEL bit of the sank
VCG.

5. Wait until the TX_SK_L.CAS_REV_CHG_DONE bit
is set.

Software can either use the TX_SK_IL.CAS_REV_CH-
G_DONE interrupt or poll the TX_SK_LCAS_
REV_CHG_DONE bit for this.

6. Wait until each member channel to be added is receiv-
ing NORM/EOS control word or a protocol error or a
timeout occurs.

Since we assumed that the remote source node adds all
of the new member channels simultaneously, we expect



US 9,461,942 B2

19
that the source would start sending NORM/EOS on the
new member receive channels simultaneously. Soft-
ware will wait until it sees NORM/EOS control on all
of the new member channels before toggling the RS-
ACK.
When software determines that the received control
word has changed (either via polling or using
RX_CH_LCAS_CTRI._CHG interrupt) on a member
channel to be added, it should check that the new value
is either NORM or EOS depending on whether the
channel has the highest sequence number or not.
If the sink does not see NORM/EOS from all member
channels within a time-out period, the transaction
would need to be cancelled. In order to do so, software
shall clear the RX_CH_VCAT_ACCEPT bits of all of
the members to be added.
It is assumed that except for the one with the highest
sequence number, the new receive member channels
will now be receiving NORM. The one with the highest
sequence number will now be receiving EOS. Their
sequence numbers will remain as before. This should
be checked as well.
Software should also check that RX CH_L-
CAS_CTRL field of the member receive channel which
had the highest sequence number previously is now set
to NORM.
Except for the previously last member, it is also
assumed that the sequence numbers and the control
words for the existing member receive channels (if any)
did not change.
If any protocol errors are detected during the transac-
tion, then the VCG may need to be reset and the NMS
informed of the failure.
7. Toggle the shadow copy of the TX_SK_LCAS_IN-
S_RS_ACK bit for the local sink VCG.

8. Toggle the TX_SK_ILCAS_REV_SEL bit of the sink
VCG.

9. Wait until the
DONE bit is set.

At this point the transaction has completed successfully
from the local sink VCG point of view and the NMS
can be informed.

3.6 Decrease Bandwidth of VCG

We assume that the sink side responds to remove requests
from source side (i.e. received control word changing from
NORM/EOS to IDLE) autonomously without getting a
request from the NMS. The source side sends the remove
requests when it gets a decrease bandwidth request front the
NMS. When the source side gets proper acknowledgment
from the sink (i.e. receiving MST=FAIL on removed mem-
bers and seeing RS_ACK toggle), it informs the NMS,
which then can ask the sink side to de-provision the mem-
bers if desired.

Though not explicitly described in this document, an
alternative is that the NMS may ask the sink side to remove
a member channel even if the channel is NORM/EOS state
(i.e. the source side has not initiated a remove request). In
this case the sink side may act as if it received an IDLE on
that channel from the source side but it would not send an
RS_ACK signal to the source side. Then the channel can be
de-provisioned if desired as well.

It is assumed that the remote source can attempt to remove
multiple channels simultaneously, i.e. the control word of
multiple channels may change to IDLE in the same multi-
frame. Sink side software shall be able to deal with it.

TX_SK LCAS_REV_SEL_CHG_

10

15

20

25

30

35

40

45

50

55

60

20

When software receives RX_CH_LCAS_CHG interrupt
on a member channel of a sink VCG, it shall perform the
following operations:

1. Wait for about 2K core clocks and read the RX_CH_L-
CAS_CTRL and RX_CH_VCAT_SQ numbers of all
the members of the VCG.

This allows software to determine if more than one
member channel may be receiving IDLE control word.
It also allows for checking against protocol errors.
Depending on the sequence number of channel being
removed, the sequence number and/or control words of
remaining member receive channels may have
changed. For example, if the channel member being
removed had the highest sequence number, then the
control word of the member receive channel with the
next highest sequence number should have changed to
EOS.

2. For each member channel receiving the IDLE control
word, set the bit in the TX_SK_LCAS_INS_MST field
of the sink VCG that corresponds to the previous (i.e.
before it started receiving IDLE) sequence number of
the member to FAIL.

3. Toggle the TX_SK_LCAS_REV_SEL bit of the sink
VCG.

4. Wait until the TX_SK_LCAS_REV_SEL bit is set.

5. Toggle the shadow copy of the TX_SK_LCAS_IN-
S_RS_ACK bit for the local sink VCG.

6. Toggle the TX_SK_LLCAS_REV_SEL bit of the sink
VCG.

7. Wait until the
DONE bit is set.

8. Clear the RX_CH_VCAT_ACCEPT bits of the mem-
ber channels removed

At this point the transaction has completed successfully
from the sink VCG point of view and the NMS can be
notified.

3.7 Decrease Bandwidth of VCG Due To Fault

Sink side software needs to respond to failures detected
on member channels that are in use (i.e. in NORM/EOS
state). There are two cases to consider in dealing with a fault
(e.g. LOS, LOF, LOP, OOM) that affects a member channel
depending on whether the channel is known to be protected
or not.

If the channel is not protected, software performs the
following operations:

1. Clear the RX_CH_VCAT_ACCEPT bit of the failed

channel

2. Set the shadow MST bit corresponding to the failed
member channel in the SK_LCAS_INS_MST field of
the sink VCG to FAIL.

3. Toggle TX_SK_LCAS_REV_SEL bit of the sink VCG.

4. Wait until the TX SK_LCAS_REV_SEL_CHG_
DONE bit is set.

If the channel is protected, software shall wait for a
defined period for the channel to be restored. If this does not
happen, software shall perform the steps above for an
unprotected channel.

Upon restoration of the channel either by switching to a
protection channel or by the failed channel recovering,
software shall perform the following operations:

1. Check that the differential delay can be compensated

with this channel as a member

2. After differential delay compensation software will
detect that the control word on the channel is DNU.

3. Set the RX_CH_VCAT_ ACCEPT bit for the member
channel

TX_SK LCAS_REV_SEL_CHG_



US 9,461,942 B2

21

4. Set the shadow MST bit corresponding to the member
channel its the TX_SK_LCAS_INS_MST field of the
sink VCG to OK.

5. Toggle the SK_ILCAS_REV_SEL bit of the sink VCG.

6. Wait until the TX SK LCAS_REV_SEL_CHG_
DONE bit is set.

3.8 Change Reverse Control Extraction Configuration

NMS specifies the following configuration parameters to

the sink node when it wants to change the reverse control
extraction configuration of member channels of a sink VCG

The identities of the channel(s) whose reverse control
extraction configuration needs to be changed

For each such channel, whether or not LCAS reverse
control information shall be extracted from it and if so
the transmit LPID of the local source VCG it would
apply to.

The following assumptions are made:

The channels are already provisioned members of LCAS
enabled sink VCGs

Software performs the following operations to change the

reverse control extraction configuration of specified member
channels:

1. Configure each new member channel as follows:

If the channel will be used to extract LCAS reverse
control information, then set its RX_CH_LCAS_
REV_EXT_SO_LPID field to the value provided
and set its RX_CH_LCAS_REV_EXT EN. Other-
wise, clear its RX_CH_LCAS_REV_EXT_EN.

4 Source Side Scenarios

It is assumed that the source mode software and not the
NMS manages assignment of transmit sequence numbers to
member transmit channels of a transmit VCG.

4.1 Create VCG

NMS specifies the following operations to the source

node when it wants to create a new source VCG:

The transmit LPID to be used for this source VCG

The channel type of the VCG

The identities of the transmit channel(s), if any, that
should initially be provisioned as members of this
source VCG

For each initial member channel, if any, whether or not
LCAS reverse control information shall be inserted to
it and if so the receive LPID of the local sink VCG it
would apply to. It is possible that different member
channels carry reverse control intonation for different
local sink VCGs. It is also possible that reverse control
information is not inserted on some or all of the initial
member channels.

The following assumptions are made:

The transmit port LPID is not in use (i.e. no transmit
channel that is not in reset has its TX_CH_LPID field
set to this LPID)

The initial member channels, if any, are of the same type
as the source VCG

The initial member channels, if any, are not in use (i.e.,
their TX_CH_SW_CFG_EN bits are set) and they are
routed to the remote sink node

Software performs the following configuration steps to

create the source VCG:

1. TX So_VCAT_EN and TX_SO_LCAS_EN bits for
the transmit LPID assigned to the source VCG

If any transmit channels are specified to be initially

provisioned into the source VCG, the remaining configura-
tion steps would be the same as those that would be
performed when provisioning these receive channels into an
existing source VCG.

10

15

20

25

30

35

40

45

50

55

60

22
4.2 Delete VCG
We assume that before a source VCG is deleted all of its
members would have been de-provisioned. The source VCG
is actually deleted from a hardware perspective at that point.
4.3 Provision New Member Channel(s) Into VCG
NMS specifies the following configuration parameters to
the source node when it wants to provision new member
channels into an existing source VCG:

The transmit LPID assigned to this source VCG

The identities of the transmit channel(s) that should be
provisioned as new members of this source VCG

For each new member channel, whether or not LCAS
reverse control information shall be inserted into it and
if so the receive LPID of the local sink VCG it would
apply to. It is possible that different member channels
carry reverse control information for different local
sink VCGs. It is also possible that reverse control
information is not inserted on some or all of the new
member channels.

The following assumptions are made:

The TX _SO_VCAT_EN and TX_SO_LCAS_EN bits of
the transmit LPID are already set

The new member channels are of the same type as the
source VCG

The new member channels are not in use (i.e., their
TX_CH_SW_CFG_EN bits are set) and they are routed
to the remote sink node

Software performs the following operations to provision

the new member channels:

1. Configure each new member channel as follows:

Set its TX _CH_LPID field so the transmit LPID
assigned to the source VCG

If the channel will be used to insert LCAS reverse
control information, then set its TX_CH_LCAS_RE-
V_INS_SK_LPID field to the value provided and set
its TX_CH_LCAS_REV_INS_EN bit

2. Take the new member channels out of reset by clearing
their TX_CH_SW_CFG_EN bits. The order for this is
not important since none of item will have their pay-
load added before a handshake.

Note that it is not necessary to set the shadow copy of the
TX_CH_LCAS_CTRL fields of the new member chan-
nels to IDLE and toggle the TX_SO_LCAS_FWD_
SEL bit of the source VCG since the reset value of the
TX_CH_LCAS_CTRL is IDLE.

4.4 De-provision Member Channel(s) From VCG

NMS specifies the following configuration parameters to

the source node when it wants to de-provision member
channels from an existing source VCG:

The transmit LPID assigned to this source VCG

The identities of the transmit channel(s) that should be
de-provisioned

The following assumptions are made:

The member channels are already provisioned members
of the source VCG but they are currently not used to
transmit payload or reverse control information (i.e. the
active copies of their TX_CH_LCAS_CTRL fields are
set to IDLE and their TX_CH_LCAS_REV_INS_EN
bits are not set)

Software performs the following operations to de-provi-

sion the new member channels:

1. Put the new member channels into reset by setting their
TX_CH_SW_CFG_EN bits.

At this point the deprovisioning transaction has com-

pleted successtully from the source VCG point of view and
the NMS can be informed of success.



US 9,461,942 B2

23

4.5 Increase Bandwidth of VCG

It is assumed that the remote sink can add multiple
members simultaneously. By this we mean that the remote
sink will toggle RS_ACK once after it has acknowledged the
add command on all member channels being added. When
adding multiple members, the source software will set the
control word of all member channels being added to ADD in
the same multi-frame.

If the remote sink is capable of adding only one member
channel at a time, source side software can break a trans-
action that needs to add multiple members into multiple
single-member add sub-transactions.

In general, it may not be possible to know if the remote
sink is capable of adding multiple members at a time or not.
It is possible that the source may send ADD control word on
multiple members simultaneously thinking that the sink will
acknowledge them together but the remote sink may not do
so. So the source side software should be able to deal with
receiving multiple RS_ACK toggles, for the sake of sim-
plicity, we do not discuss such cases in this document.

NMS specifies the following configuration parameters to
the source node when it wants to add new members to a
source VCG:

The receive LPID assigned to the local sink VCG

The identities of the member channel(s) to be added

The following assumptions are made:

The member channels are already provisioned members
of the source VCG but they are currently not used for
carrying payload (i.e. sending IDLE as the control
word)

Software performs the following operations to add the

member channels:

1. Set the TX_CH_LCAS_CTRL fields of all the member
channels to be added to ADD

2. Assign sequence numbers to the members to be added
starting from one higher than the current highest
sequence number used in the source VCG (or zero if
this is the first time members are being added)

3. Set the TX_CH_VCAT_PL_SQ and TX_ CH_LCA-
S_OH_SQ of each member channel to be added to the
sequence number assigned to it

4. Toggle the TX_SO_VCAT_FWD_SEL bit of the source
VCG

5. Wait until the TX_SO_VCAT_FWD_CHG_DONE bit
of the source VCG is set
Software can either use the TX_SO_VCAT_FWD_CH-
G_DONE interrupt or poll the TX_SO_VCAT_FWD_
CHG_DONE bit for this.

6. Wait until each member being added is receiving

MST=0K status or a timeout occurs
Since we assumed that the remote sink will send
MST=OK for all new members being added before
toggling the RS_ACK, software waits till it sees
MST=0K on all the member channels.
Software can determine when all channels are receiving
MST=0K status via observation of the RX_SO_LCA-
S_EXT_MST field of the source VCG. Software can
poll this field or use the associated RX_SO_LCA-
S_EXT_MST_CHG interrupt. The bit to look for in
that field for a given member channel to be added is
based on the sequence number assigned to that channel.
If a timeout occurs before MST=0K status is seen on
all member channels to be added, software shall cancel
the transaction and report the failure to the NMS. To
cancel the transaction software would set the control
words of all members to be added to IDLE and toggle
the TX_SO_VCAT_FWD_SEL bit.

10

15

20

25

30

35

40

45

50

55

60

65

24

7. Set the TX_CH_LCAS_CTRL fields of the member
channels to be added to NORM/EOS (EOS for the
member with the highest sequence number)

8. If there were active members already, set the
TX_CH_LCAS_CTRL field of the existing member
previously with the highest sequence to NORM

9. Toggle the TX_SO_VCAT_FWD_SEL bit of the source
VCG

10. Wait until the TX_SO_VCAT_FWD_CHG_DONE
bit of the source VCG is set

11. Wait until the received RS_ACK value for the local
VCG toggles or RS_ACK timer expires.

At this point the increase bandwidth transaction has
completed successfully from the source VCG point of view
and the NMS can be informed of success.

4.6 Decrease Bandwidth of VCG

It is assumed that the remote sink can remove multiple
members simultaneously. By this we mean that the remote
sink will toggle RS_ACK once after it has acknowledged the
remove command on all member channels being removed.
When removing multiple members, the source software will
set the control word of all member channels being removed
to IDLE in the same multi-frame.

If the remote sink is capable of removing only one
member channel at a time, source side software can break a
transaction that needs to remove multiple members into
multiple single-member remove sub-transactions.

In general, it may not be possible to know if the remote
sink is capable of removing multiple members at a time or
not. It is possible that the source may send IDLE control
word on multiple members simultaneously thinking that the
sink will acknowledge them together but the remote sink
may not do so. So the source side software should be able
to deal with receiving multiple RS_ACK toggles. For the
sake of simplicity, we do not discuss such cases is this
document.

NMS specifies the following configuration parameters to
the source node when it wants to add new members to a
source VCG:

The receive LPID assigned to the local sink VCG

The identities of the member channel(s) to be removed

The following assumptions are made:

The member channels are already provisioned and pay-
load carrying members of the source VCG (i.e. sending
NORM/EOS as the control word)

Software performs the following operations to add the

member channels:

1. Set the TX_CH_LCAS_CTRL fields of all the member
channels to be removed to IDLE

2. It may be necessary to re-assign sequence numbers to
some or all of the remaining members so that they
maintain a contiguous segment starting from zero. If so,
and set the TX_CH_LCAS_OH_SQ and TX CH_V-
CAT_PL_SQ fields of such members to the new
sequence numbers. It may also be necessary for the
remaining member with the highest sentence to change
its TX_CH_LCAS_CTRL field value from NORM to
EOS.

3. Toggle the TX_SO_VCAT_FWD_SEL bit of the source
VCG

4. Wait until the TX_SO_VCAT_FWD_CHG_DONE bit
of the source VCG is set

5. Wait until each member being removed is receiving
MST=FAIL status or a timeout occurs
Since we assumed that the remote sink will send
MST=FAIL for all members being removed before



US 9,461,942 B2

25

toggling the RS_ACK, software waits till it sees
MST=FAIL on all the member channels.

Software can determine when all channels are receiving
MST=FAIL status via observation of the RX_SO .-
CAS_EXT_MST field of the source VCG. Software
can poll this field or use the associated RX_SO_LCA-
S_EXT_MST_CHG interrupt. The bit to look for in
that field for a given member channel to be added is
based on the sequence number assigned to that channel
before the remove took affect.

6. Wait until the received RS_ACK value for the local
VCG toggles or RS_ACK timer expires.

At this point the decrease bandwidth transaction has
completed successfully from the source VCG point of view
and the NMS can be informed of success.

4.7 Decrease Bandwidth of VCG Due to Fault

When an unprotected member channel that is in use (i.e.
in NORM/EOS state) fails, the sink side will send
MST=FAIL status to the source side. When the source side
detects this, it shall perform the following operations.

1. Set the TX_CH_LCAS_CTRL field of all the failed

member channel to DNU

2. If the channel that failed was not the last member of the
source VCG, decrement the TX_CH_VCAT_PL_SQ
fields of all members that had a higher sequence
number that the channel that failed by one.

If the channel that failed was the last member of the
source VCG, set the TX_CH_LCAS_CTRL field of the
member with the next highest sequence to EOS.

3. Toggle the TX_SO_VCAT_FWD_SEL bit of the source
VCG

4. Wait until the TX_SO_VCAT_FWD_CHG_DONE bit
of the source VCG is set

When a failed member channel recovers, the sink skis will
send MST=0K status to the source side. When the source
side detects this, it shall perform the following operations:

1. If the channel that recovered was the last member, set
the TX_CH_LCAS_CTRL field of the recovered mem-
ber channel to EOS and that of the member with the
next highest sequence to NORM.

Otherwise set the TX_CH_LCAS_CTRL field of the
recovered to NORM.

2. If the channel that recovered was not the last member,
increment the TX_CH_VCAT_PL_SQ fields of all
members that had a higher sequence number that the
channel by one.

3. Toggle the TX_SO_VCAT_FWD_SEL bit of the source
VCG

4. Wait until the TX_SO_VCAT_FWD_CHG_DONE bit
of the source VCG is set

4.8 Change Reverse Control Insertion Configuration

NMS specifies the following configuration parameters to
the source node when it wants to change the reverse control
insertion configuration of member channels of a source
VCG

The identities of the channel(s) whose reverse control
extraction configuration needs to be changed

For each such channel, whether or not LCAS reverse
control information shall be inserted into it and if so the
receive LPID of the local sink VCG it would apply to.

The following assumptions are made:

The channels are already provisioned members of LCAS
enabled source VCGs

Software performs the following operations to change the
reverse control extraction configuration of specified member
channels:

10

15

20

25

30

35

40

45

50

55

60

65

26

2. Configure each new member channel as follows:

If the channel sill be used to insert LCAS reverse
control information, then set its TX_CH_LCAS_RE-
V_INS_SK_LPID field to the value provided and set
its TX_CH_LCAS_REV_INS_EN bit. Otherwise,
clear its TX_CH_LCAS_REV_INS_EN bit.

Alignment

Referring to FIGS. 4A to 4E, diagrammatic views of a
hardware system for a receive channel configured according
to the invention is illustrated. These embodiments illustrate
a receive channel that embodies LCAS functions, and that
embodies various novel embodiments and junctions of the
invention. These functions are described in further detail
below in connection with alignment of channels, de-se-
quencing and other functions that pertain to the invention.

Referring to FIG. 4A, an illustration of an aligner con-
figured according to the invention is illustrated. The system
400 includes a high order and low order (HO/LO) in a
receive channel, multi-frame indicator (MFI) analyzer, col-
lectively known as the ANA. The ANA transmits data
streams to the write manager 405 and has multiple first-in/
first-out (FIFO) memory storage arrangements, FIFO-A
(406), FIFO-B (408), . . ., FIFO-N (410). Such configura-
tions are well known to those skilled in the art. According to
the invention, write manager receives each member of a
VCG is each FIFO and writes the data to the multi-channel
transparency 412. In one embodiment, the write manager is
configured in a static random access memory (SRAM) and
the multi-channel transparency configured as a dynamic
random access memory (DRAM). It will be known to those
skilled in the art, however, that different configurations and
different types of memory and storage components can be
used. According to the invention, the read manager 414 is
configured to read from the multi-channel transparency into
memory storage. Similar to the write manager, the read
manager is configured with first in and first out, -A (416), -B
(418), . . ., -N (420). According to the invention, the read
manager reads from the multi-channel transparency into its
respective FIFO storage when the members of a virtual
concatenation group (VCG), are complete and aligned in the
multi-channel transparency 412. Once they are aligned, the
read manager transmits the aligned VCG to the de-se-
quencer. In one embodiment the read manager is configured
in a static random access memory (SRAM). Those skilled in
the art will understand that the memory configurations are
flexible, and that other types of memory types or configu-
rations are possible without departing from rise spirit and
scope of the invention, which is defined in the appended
claims and their equivalents.

Referring to FIG. 4B, a flow chart is shows illustrating
one operation of the received channel according to one
embodiment of the invention. In step 424, an input VCG
channel data is received, for example at the ANA 402, FIG.
4A. In step 426, the LCAS Packet Identification (LPID) is
examined to see whether or not the transmission is a VCAT
transmission. If it is not, then the transmission is sent to the
POH, 422 in FIG. 4A, and the process returns to step 424.
If the LPID does indicate that it is a VCAT transmission, the
process proceeds to step 430, where the data is stored in the
write manager, 405 in FIG. 4A which may be an SRAM. In
step 432 the write manager writes the MTC, 412 in FIG. 4A,
which may be a DRAM. In step 434, it is determined
whether or act the members of a VCG are aligned. If they are
not, then the process turns to step 424 to receive further data.
Once they aligned, is step 434. A more detailed embodiment
if further described below. Then in step 436 the numbers of
the VCG are read by the read manager. In step 438, the data



US 9,461,942 B2

27

is sent to the de-sequencer for sequential processing and the
output is outputted in step 440.

Referring to FIG. 4C, a block diagram is illustrated
showing symbolically how the members of a group are
aligned. In step 448, an input is received where the data
input is not aligned nor in proper sequence. In step 450, the
alignment is performed where the corresponding groups are
aligned, two members of one group in this example. In step
452, the sequence is reordered so that the members of the
VCG are aligned and in sequence.

Referring to FIG. 4D, another example of the alignment
process in a receive channel, also considered as do-align-
ment when considered from the receiving channels perspec-
tive, is shown in a diagrammatic manner. In the first step
442, individual channels A, B, C, and D are received at the
multi-channel transparency from the write manager. These
are initially read by the read manager, according to one
embodiment of the invention, where the first channel to be
received in time is read by the read manager, and the MFI
number is set at a GO state. There are three states in the read
manager. A GO state is a fully received channel from write
manager to the MCT that is ready to be read once the other
channels are completely received and aligned and, thus
likewise in a Go state. The Drain state is a state of a channel
in which the entirety of the channel data has not been fully
received in the MCT, and still needs to receive further
information to be complete. The wait or stall state is a
channel that has been received prior to the initial channel but
is ready past the first read channel when the MFI was set,
and is set to wait until all of the channels are aligned.

As can be seen, channel A is in a go state, since it was the
first channel to be received. Here at the MFI number is set.
Channel B is set to a drain state, because it was received later
in time and is not complete. Channel C, in contrast, is
received ahead of time where it is complete and is set in a
wait state to wait for the other channels to catch up to be
aligned. Similar is the case for channel D, which is also set
in the wait state. The MFI could possibly be reset to obviate
the wait or stall state. However, the LCAS specification
requires hitless operations, and resetting the MFI would
cause a bit. Therefore, in a preferred embodiment, the MFI
is set once the first channel member of a group is received,
and subsequent members that arrive from in the group are set
accordingly.

In the next step, 444, the channels are realigned by the fact
that all of their data has arrived and are set to Go. In step
446, all channels A-D are set to the GO state, indicating that
they are aligned up, in the GO state and ready to be read
from the read manager. At this point, the read manager reads
the VCG in its entirety. The VCG is then seat to the
sequencer for sequencing.

According to the invention, the modularity of the hard-
ware, whether it is implemented on a single die or in a chip
set, allows for alignment of received channel data indepen-
dently from the sequence of the received data. In a subse-
quent operation, the sequence of the received channels are
reordered. This is improvement over the prior art, where
these processes are done- in one single step. As a result, data
arrives and exits the received circuits smoothly, without
jitter, which results in decoupling. In operation, the align-
ment is done first, and once they are all aligned, they are read
from date of memory in time domain multiplex order. The
operation is smoother, tedium based where each slot gets a
time slot. All of the operations are preplanned. No burstinest,
undue bursts of data, or uncertainty exists in the configura-
tion. Bach channel gets a periodic time slot so data travels
smoothly and flows through.

10

15

20

25

30

35

40

45

50

55

60

65

28

This is in contrast to prior operations where the data is
stored as it comes in and pulled out in the same order. The
reordering or synchronization is done in chunks, resulting in
problematic burstiness and uses a good deal of memory.
Such a configuration changes travel patterns, and arbitration
is very complicated. According to the invention, the periodic
solution is smoother where the alignment is performed first
and substantially obviates any burstiness or lost data.

Referring to FIG. 4E, a flow chart is illustrated of a system
for setting the MFI number according to the invention. In
step 458, channel data is received by a member channel. In
step 460 the MFI number is read from the channel. In step
462, it is determined whether or not the channel is the first
channel read from the group. If it is, then the MFI number
is set for the group. It is then determined in 484 if all member
data has been received, if not, then the process returns hack
to step 458 where further member channels are written as
they arrive. In step 460, the MFI from the channels read, and
if it is not the first channel, the process proceeds from step
462 to step 470 where the MFI of the subsequently received
channel is compared to the set MF1, which is set by the first
channel established. In step 472, it is determined whether the
MEFT is larger than the set MF1. If it is larger than the set MFI
then the state is set at wait in step 474. If not, or after the
state is set it is determined in step 476 whether the MFI is
smaller than the set MFL. If the answer is yes, assuming that
it was probably known at prior step, the state is set to drain
in step 478 and the process proceeds to step 480 to determine
whether or not it is equal to the set MFL. If it is equal to the
set MFI, the process sets the state at GO in step 482 and the
process returns to step 484 to determine whether or not all
member data is received. This process loops around step 458
and subsequent steps until all channels have been received.
Referring back to FIG. 4D, this illustrates how the MFI as
described in FIG. 4E sets the states after channels are
received. Still referring to FIG. 4D, the process is illustrated
and described in FIG. 4E illustrates how the states are set as
each channel is received. As channel A arrives first in time,
it is set to a GO state, establishing the first MFI. After other
channels are received, such as channels B, C, and D, the
MEFT’s are compared in order to set their state. In FIG. 4D,
step 444 shows that channel A is set to GO because it is the
first to arrive. The channels must all proceed to the GO state
before the group can be read and farther processed. The
Channel B is set to drain because it is not fully received yet,
and Channel C and D remain in the wait or stall state until
channel B has completed its transmission. In step 448, once
all channel data has arrived form all channels, A, B, C, and
D, they are all set to GO and are ready to be read by the read
manager.

Referring back to FIG. 4A, the read manager reads the
channel data when all are set to GO receiving each channel
data in FIFO 416, 418 and other FIFOs. In practice, the read
manager may repeatedly read the locations lathe MCT 412
repeatedly until all are in the GO state. Once in the GO state,
all are read in their entirety by the read manager. In
operation, the write manager receives rise channel data and
stores it in the MCT memory storage as the channel data
arrives from ANA 402. In one embodiment, the write
manager is a SRAM and the MCT is a DRAM, the read
manager may also be an SRAM. Thus, the size of the write
manager and the read manager can be small in comparison
to the MCT, which can be a DRAM for a large amount of
storage. The write manager can write a large amount of data
into the MCT without requiring a great deal of storage while
receiving multiple channels of data. The MCT can store the
data until it is aligned. Once aligned, the read manager can



US 9,461,942 B2

29

read from the MCT in a time domain multiplexed manner.
The output from the read manager is seat to the de-sequenc-
ing module, which reorders the channel data accordingly.
5 Overview

In one embodiment, a receive circuit, or the functions of
the VCT_RX block, are distributed amongst a plurality of
modules. In one embodiment, the modules include a Con-
figuration (CFG) module, a Calendar/Failure/Register
(CFR) module, a MFI Analyzer (ANA) module, an Aligner
Write Manager (ALIG_WR), an Aligner Read Manager
(ALIG_RD), an LCAS/VC Controller (LVC) and a Payload
De-sequencer (DSQ). In a preferred embodiment, the non-
VCAT packet traffic follows a different path in the VCT_RX
block than the VCAT traffic.

Configuration (CFG)

5.1 Overview

The CFG module maintains all global configuration and
status parameters and all interrupt status parameters. It
directs CPU requests for all other configuration and status
registers to the module(s) that implement it. The CFG
module may generate multiple requests from a single CPU
request to implement the registers where parameters from
multiple modules are combined.

The CFG module implements the indirect access scheme
used by all other modules in the RX_VCT block. Note that
all of the configuration and status parameters in these
modules use indirect access where as the parameters in the
CFG block are accessed directly. The indirect access scheme
is the same as the one used in the packet block, i.e. it
supports the auto increment model.

The CFG module is responsible for generating interrupt
summary status and generating interrupt to the top level
CPU module in Orion.

5.2 Interfaces

The CFG module interlaces to all other modules in the
VCT_RX block using separate point-to-point busses for
passing configuration or states read/write requests from the
CPU. Note that, the CFG module itself maintains some
configuration and status parameters, including all interrupt
status parameters.

All modules except the ALIG_WR module use separate
point-to-point interrupt busses to indicate interrupt events to
the CFG module. The only interrupt that the ALIG_WR
module can generate is for parity error on channel state
memory. It indicates parity error events to the ALIG_RD
module by corrupting the read pointer of the affected chan-
nel. The ALIG_RD module combines parity errors from
ALIG_WR module with its own channel level parity error
events. Since the ALIG_RD and LVC modules are driven by
the same calendar, the CFG block can line interrupts that
happen in the same clock from them (no interrupts come
from DSQ).

5.3 Configuration and Status Parameters

In one embodiment, the CFG module maintains the fol-
lowing parameters:

All global configuration parameters

All channel level interrupt enable configuration param-

eters

All sink port level interrupt enable configuration param-
eters

All source port level interrupt enable configuration
parameters

All global status parameters

Alt global interrupt status parameters

All channel level interrupt status parameters
All sink port level interrupt status parameters
All source port level interrupt status parameters

5

10

15

20

25

30

35

40

45

50

55

60

65

30

These parameters are implemented using storage such as
flops, flip flops, or other memory devices or configurations
as follows:

Global parameters are implemented using flops.

Sink port level or source port level interrupt enable and
interrupt status parameters are implemented using
flops.

Channel level interrupt enable and interrupt status param-
eters are implemented using memories.

Collisions between hardware and software to parameters
maintained in the CFG block are handled according to a
collision algorithm that delegates the processes to hardware
and software. In one embodiment, the process is as follows:

If a write request from software for a configuration
parameter collides with a read request from hardware,
the value from software will be used by hardware.

If a write request from software for a global status, or an
interrupt status parameter collides with a read request
from hardware, the value from hardware will be passed
to software.

5.3.1 Global Configuration

The VCAT DRAM is configured according to size and the
size a group. These parameters are static. They should not be
changed while the VCT_RX block is not in reset (or when
any VCAT enabled channel is not in reset).

Counters are configured for getting into/out of OOM and
getting into LOM. The commands are in the form of
RX_VCAT_HO_OOM1_IN,
RX_VCAT_HO_OOM1_OUT, RX_VCAT_LO_OOMI1_IN
and RX_VCAT_LLO_OOM1_OUT, etc. These parameters
are also static and should not be changed while the VCT_RX
block is not in reset (or when any VCAT enabled channel is
not in reset).

Other counters are for setting and clearing LCAS persis-
tent CRC alarm (DCRC)

They are of the form RX_LCAS_DCRC_N1, RX_L.C-
AS_DCRC_K1, etc. Similarly, these parameters are static
and should not be changed while the VCT_RX block is not
in reset (or when any VCAT enabled channel is not in reset).

The MFI capture is configured to capture the MFI value
for each channel. The commands are of the form RX_V-
CAT_MFI_CAP_CHANI1, . . . RX VCAT MFI_CAP_
CHAN(n), and RX_VCAT_MFI_CAP_DONE_INT_EN

The group identification is similarly captured. The com-
mands may be of the form RX_LCAS_GID_CAP_PORT,
RX_LCAS_GID_CAP_DONE_INT_EN, etc.

The DRAM FIFO level measurement is configured in
software for channels according to appropriate thresholds.
Commands may be of the form RX_VCAT_DRAM_FI-
FO_LVL_CAP_CHAN, RX_VCAT DRAM_FIFO_LV-

L_THSLD, RX VCAT _DRAM FIFO_LVL_CAP_DO-
NE_INT_EN,
RX_VCAT_DRAM FIFO_BELOW_THSLD_CH-

G_INT_EN, or other similar forms.

The interrupt summary enable is configurable among
various circumstances and applications. For example, inter-
rupt enable bits may be configured for interrupt summary
status bits at STS level (48 bit register). They may also be
for interrupt summary status bits at VT level (48x28 bit
registers). They could also be configured for the interrupt
summary status bits at port level (128 bit register), for
interrupt summary status bit of all channels or and interrupt
enable bit Interrupt summary status bit of all ports. Those
skilled is the art will understand the variety of interrupt
configurations to enable different applications.



US 9,461,942 B2

31

A DRAM may be configured for read request FIFO
overflow using an interrupt enable. The command could be
of the form RX_VCAT_DRAM_RD_REQ_FIFO_OVFL_
CNT_CHG_INT_EN.

Also, a DRAM may be configured to enable a write not 5
ready (sticky) error interrupt enable, which could be of the
form RX_VCAT_DRAM_WR_NOT_RDY_ER-
R_INT_EN. Similarly, a DRAM may be configured for a
read not ready (sticky) error interrupt enable, which may be
of the form RX_VCAT DRAM_RD_NOT_RDY_ER-
R_INT_EN

5.3.2 Channel Level Interrupt Enable Configuration

Channel interrupt enable configuration parameters are
grouped into a dual portion of memory, such as a 1344x12
dual port memory. This may be shared by high and low order
channels. One example is the following table that shows the
structure of the entries in this memory.

10

15

Value
after
initiali-
zation

20

Parameter Size Static

RX_CH_VCAT_OOM1_CHG_INT_EN
RX_CH_VCAT_OOM2_CHG_INT_EN
RX_CH_VCAT_LOM_CHG_INT_EN
RX_CH_VCAT_ ACC_ESL_CHG_INT_EN
RX_CH_NL_VCAT_SQM_CHG_INT_EN
RX_CH_LCAS_SQ_CHG_INT_EN
RX_CH_LCAS_CTRL_CHG_INT_EN
RX_CH_LCAS_CRC_ERR CHG_INT_EN
RX_CH_LCAS_NL_SRC_INT_EN
RX_CH_CFG_PRTY_ERR_CHG_INT_EN
RX_CH_CTRL_PRTY_ERR CHG_INT_EN
Odd parity

25

30

el e N o S R e e e
OO0 O0OO0OODODO0OO0OODOO

L22222222227

In a preferred embodiment, hardware does not disable
interrupts from a channel that has an entry in this memory
has a parity error.

5.3.3 Sink Port Level Interrupt Enable Configuration

The following table shows the sink port interrupt enable
configuration parameters.

35

32

5.3.5 Global Status

Global status may include MFI capture status, DRAM-
FIFO level measurement status, Interrupt summary status,
includes the following parameters, DRAM Read request
FIFO overflow, DRAM write not ready error and ether status
information. Some examples are as follows.

MFI Capture Status

RX_VCAT_CHAN1_MFI

RX_VCAT_CHAN2_MFI

RX_VCAT_MFI_CAP_DONE

DRAM FIFO Level Measurement Status

RX_VCAT_DRAM_FIFO_LVL

RX_VCAT_DRAM_FIFO_LVL_CAP_DONE

RX_VCAT_DRAM _FIFO_LVL_BLW_THSLD_CHG

Interrupt Summary Status

Interrupt summary status bits at STS level (in 2 registers)

Interrupt summary status bits at VT level (in 48 registers)

Interrupt summary status bits at port level (in 4 registers)

Interrupt summary status bit of all channels (at STS level)

Interrupt summary status bit of all ports

DRAM Head Request FIFO Overflow

RX_VCAT_DRAM_RD_REQ_FIFO_OVFL_CNT

RX_VCAT_DRAM_RD_REQ_FIFO_OVFL_

CNT_CHG

DRAM Write Not Ready Error

RX_VCAT_DRAM_WR_NOT_RDY_ERR

The following global interrupt status bits may be grouped
in one register:

RX_VCAT_MFI_CAP_DONE

RX_VCAT_DRAM_FIFO_LVL_CAP_DONE

RX_VCAT_DRAM _FIFO_LVL_BLW_THSLD_CHG

RX_VCAT_DRAM_RD_REQ_FIFO_OVFL_

CNT_CHG

RX_VCAT_DRAM_WR_NOT_RDY_ERR

Interrupt summary status bit of all channels

Interrupt summary status bit of all ports

5.3.6 Channel Level Interrupt Status

All channel interrupt status parameters except the
RX_CH_VCAT_FAIL_STICKY may be grouped into a dual
port 1344x12 memory, which is shared by high and low

Value after
Parameter Size Static initialization
RX_SK_VCAT_RBID_CHG_DONE_INT_EN 1 N 0
RX_SK_ILCAS_GID_ERR_CHG_INT_EN 1 N 0

Note that since all sink port level configuration and state
parameters are implemented in flops, there is no configura- 50
tion or control parity at the sink port level.

5.3.4 Source Port Level Interrupt Enable Configuration

The following table shows the source port interrupt enable
configuration parameters. 55

Value
after
initiali-
Parameter Size  Static  zation 60
RX_SO_LCAS_MST_CHG_INT_EN 1 N 0
RX_SO_LCAS_RS ACK_CHG_INT_EN 1 N 0

Note that since there are no configuration parameters or
state variables for source ports, there is no configuration or
control parity interrupt enables at the source port level.

65

order channels. The following table shows and example of
the structure of the entries in such a memory configuration.

Value after
initialization or
channel reset

Parameter Size

RX_CH_VCAT_OOMI1_CHG
RX_CH_VCAT_OOM2_CHG
RX_CH_VCAT LOM_CHG
RX_CH_ACC_ESL_CHG?
RX_CH_NL_VCAT_SQM_CHG
RX_CH_NL_VCAT_ACC_SQ_CHG
RX_CH_LCAS_SQ_CHG
RX_CH_LCAS_CTRL_CHG
RX_CH_LCAS_CRC_ERR_CHG
RX_CH_LCAS_NL_SRC_CHG
RX_CH_CFG_PRTY_ERR_CHG
RX_CH_CTRL_PRTY_ERR_CHG

o e e e b e




US 9,461,942 B2

33

These bits may alternatively be reset when RX_CH_V-
CAT_MFI_EN is set to zero.

Also, this parameter may be valid only for low order
channels that carry extended signal label. Hardware may not
be configured to check if the V5 bit indicates extended signal
label is used or not when extracting extended signal label.
Also, such a memory may not be protected by parity.

5.3.7 Sink Port Level Interrupt Status

The following is an example of a sink port interrupt status
parameters, where the command is RX_SK_VCAT_RBID_
CHG_DONE, the size is 1 bit, and the value after initial-
ization or sink port reset is zero. If all sink port level
configuration and state parameters are implemented in flops,
there would be no configuration or control parity at the sink
port level.

5.3.8 Source Port Level Interrupt Status

An example of source port interrupt status parameters is
RX _SO_LCAS_MST CHG and RX _SO_LCAS_R-
S_ACK_CHG, where each are 1 bit in size and have a value
of zero after initialization. If there are no configuration
parameters or state variables for source ports, there may be
no configuration or control parity error interrupt status bits
at the source port level. Also, if there is no source port level
reset, these status variables must always be written 1 by
software to be cleared.

5.4 Interrupt Summary Generation

The interrupt status summarization may be performed at
several levels. For example, there may be a summary of all
interrupt status parameters related to an STS-1. Note that if
an STS-1 is VT mapped, then this summary covers the
interrupt status parameters of all the VT channels within that
STS. The STS interrupt summary bits are kept in 48 flops.

There may also be a summary of all interrupt status
parameters related to a VT channel. The VT summary bits
are organized by STS and kept in 48%x28 flops. If an STS
channel is not VT mapped, the summary status bits of VT
channels corresponding to that STS will be cleared.

There may also be a summary of all interrupt status
parameters related to a sink port. Note that these interrupt
parameters are meaningful only if the sink port is VCAT
enabled. The sink port interrupt summary bits would be kept
in 128 flops.

Furthermore, there may be a summary of all interrupt
status parameters related to a source port. Note that these
interrupt parameters are meaningful only if the sink port is
LCAS enabled. The source port interrupt summary bits
would be kept in 128 flops.

When a channel is reset, the CFG clears the interrupt stays
bits of that channel. It does not directly clear the summary
interrupt bit(s) related to that channel. When a sink port is to
reset, the CFG clears the interrupt status bits of that sink
port. It does not directly clear the summary interrupt bit(s)
related to that sink port. There is no source port reset that
clears the source port level interrupt status bits. Software
needs to write 1 to both RX_SO_LCAS_MST_CHG and
RX_SOL_LCAS_RS_ACK_CHG interrupt status bits to
clear them. If the interrupt enable configuration bit of a
particular interrupt status bit is not set, then that interrupt
status bit does not contribute to the summary.

5.4.1 Channel Interrupt Summary Generation

The CFG module is configured to handle simultaneous
channel interrupts from two independent sources, for
example, the ANA and the ALIG_RD/LVC. To handle this,
the CFG may be configured to use two separate dual port
memories for channel level interrupt status parameters com-
ing from ANA and ALIG_RD/LVC. To perform interrupt
summary, the CFG module may read the channel interrupt

10

15

20

25

30

35

40

45

50

55

60

65

34

status memories and sink and source port interrupt status
registers continuously. The channel interrupt summary gen-
eration process and the CPU share a port on the dual port
memories, with CPU access given priority.

6 Calendar Fail Register Module (CFR)

6.1 Overview

The CFR module may have a plurality of functions, for
example, it may have the following functions. First, storing
all channel level configuration. Also, calculating the start
and end address of DRAM space allocated to a channel
based on the overall DRAM space allocated to VCAT, the
type of the channel and the DRAM diagnostic mode. Fur-
ther, if may be configured for generating the internal free
running calendars (1x, 2x, 56x, and 62x) used throughout the
VCT_RX block based on the channel structure configura-
tion. It may also be configured to distribute channel con-
figuration and fail/reset state to other modules along with
calendar information. And n may also be configured for
VCAT alignment failure handling. The calendar generation,
DRAM space allocation and failure, handling functions are
described In the “VCT_Aligner” document.

6.2 Interfaces

The CFR module interfaces to the ANA, ALIG_WR,
ALIG_RD and the CFG modules. See the “vct_rx_cfr”
micro architecture document for the interface signals.

6.2.1 Interface to the ANA

The interface to the ANA is primarily for the ANA to get
channel configuration information. But the response to the
configuration request from the ANA includes a channel fail
bit in addition to the configuration parameters.

The ANA module does not process the channel fail
indication from the CFR module. It just passes this signal to
the ALIG_WR module, which uses it to determine if data
should be written, to staging FIFO of the associated channel
and if the write pointer of the associated channel shall be
corrupted. Note that the channel fail condition can exist even
if the ANA module is not reporting an alarm on the channel.

The CFR passes the CH_CFG_PRTY_ERR condition as
part of the configuration response to the ANA. Although this
is not required by ANA to function, ANA stores this bit in
its state memory. When it detects a change it will generate
an interrupt to the CFG.

6.2.2 Interface to the ALIG_WR

The CFR interface to the ALIG_WR has two independent
groups of signals based on the 1x can 2x calendars:

Signal group based on the 2x calendar for CFR to pass the

TID of the channel in the current calendar cycle and its
fail condition to the ALIG_WR, which uses them to
move data from staging FIFO and to the main FIFO.

Signal group based on the 62x calendar for CFR to pass

the TID of the channel in the current calendar cycle, its
fail condition and the start and end addresses of the
space allocated to it in DRAM to the ALIG_WR, which
uses them to move data from the main FIFO to DRAM.

6.2.3 Interface to the ALIG_RD

In one embodiment, the CFR interface to the ALIG_RD
has five independent groups of signals. Four of these signals
may be based on the 56x, 62x and 1x calendars.

One signal group based on the 56x calendar for CFR to
pass the TID of the channel in the current calendar cycle, its
reset and fail conditions and the start and end addresses of
the space allocated to it in DRAM to the ALIG_RD, which
uses them to move data from DRAM to the main FIFO of the
channel and to reset the main FIFO of the channel.

Another signal group based on the 2x calendar for CFR to
pass the TID of the channel in the current calendar cycle and
its reset and fail conditions to the ALIG_RD, which uses



US 9,461,942 B2

35

them to move data from the main FIFO of the channel to the
staging FIFO of the channel and to reset the staging FIFO of
the channel.

Another signal group based on the 1x calendar for CFR to
pass the TID of the channel in the current calendar cycle, its
reset and fail conditions, its configuration, its type, the reset
state of the VCG it is a member of, the parity status of its
configuration memory entries, and the current calendar
generation counters to the ALIG_RD, which uses them to
move data from the staging FIFO to the LVC and reset the
channel and VCG states it maintains.

The channel configuration data passed with the 1x calen-
dar may include data that is needed not only by the ALI-
G_RD but also the downstream LVC and DSQ modules. The
channel type and calendar generation counters are used by
ALIG_RD as well as DSQ.

Another signal group may be based on the 1x calendar for
ALIG_RD to pass the TID of the channel in the current
calendar cycle, its DRAM overflow error or alarm detection
status to the CFR, which uses them to update the channel and
VCG fail states. The other signal group may not be based on
a calendar but is used by the ALIG_RD to get the fail status
of a channel from the CFR.

In interfacing between the CFR and the CFG, the CFG
accesses the CFR to read and write channel configurations.
The CFR is configured to send internet events to the CFG.

6.3 Configuration

The CFR module maintains all per channel configuration
parameters and STS channel structure configuration param-
eters. If also maintains all sink port level configuration
parameters except the reorder buffer ids (RX_SK_VCA-
T_RBID0/1). The configuration information is piped to the
blocks that need it along with the 1x calendar.

6.3.1 STS Channel Structure Configuration

STS channel structure configuration registers are imple-
mented using 48x9 flops.

Parameter Size Static Value after initialization
RX_CH_STS_VT 1 ! 0
RX_CH_STS_VC4 1 e 0
RX_CH_STS_VTG_TYPES 7 ! 0

Note
"The channel structure configuration parameters are static in the sense that they should not
be changed while any current channel(s) that would be affected by the changed are out of
reset. Also, changing of these parameters in the VCT_RX block should be done in
coordination with corresponding configuration in the SONET/SDH receive block.

6.3.2 Channel Level Configuration

Since the ANA module seeds to access conjuration infor-
mation asynchronously with reject to the free running 1x
calendar that drives the other modules, the configuration
information required by the ANA is duplicated in a separate
dual port memory. When software updates these parameters,
both memories will be updated. When software reads them,
the values in the memory used by 1x calendar will be
fetched.

6.3.2.1 Memory For Channel Configuration Accessed By
1x Calendar

All of the channel level configuration parameters are
grouped into a 1344x25 dual port memory, which is shared
by high and low order channels. The following table shows
the structure of the entries in this memory.

Value after
Parameter Size Static initialization
RX_CH_SW_CFG_EN 1 N/A 1
RX_CH_VCAT_MFI_EN 1 N3 1

-continued
Value after
Parameter Size Static initialization
5 RX_CH_SK_LPID 7 Y o!
RX_CH_VCAT_ACCEPTED 1 N 0?
RX_CH_LCAS_REV_EXT EN 1 N 0
RX_CH_LCAS_REV_EXT SO_LPID 7 N o!
RX_CH_NL_VCAT_EXP_SQ 6 N o!
Odd parity 1 N/A 1
10
Note
These parameters do not need to have an initial value for operational purposes. However,
for parity protection, they are set to zeroes.
Note
2During an operation cycle, the RX_CH_VCAT_ACCEPTED parameter should be set
to 0 before a channel is brought out of reset if the channel is to belong to an LCAS enabled
15 VCG
Note
3The RX_CH_VCAT_MFI_EN is used independently of the RX__CH_SW_CFG_EN.
See the discussion in section 7.4
6.3.2.2 Memory For Channel Configuration Accessed By
ANA
20 The following configuration parameters respired by the
ANA are grouped into 1344x10 dual port memory, which is
shared by high and low order channels. The following table
shows the structure of the entries in this memory.
25
Parameter Size  Static  Value after initialization
RX_CH_SW_CFG_EN 1 N/A 1
RX_CH_VCAT_MFI_EN 1 N2 1
30 RX_CH_SK_LPID 7 Y ot
Odd parity 1 N/A 1
Note
This parameter does not need to have an initial value for operational purposes. However,
for parity protection, they are set to zeroes.
35  6.3.3 Sink Port Level Configuration
The following sink port configuration parameters are
implemented using 128x4 flops.
40 . .V.ah.le alﬁer
initialization or
Parameter Size Static sink port reset
RX_SK_SW_CFG_EN 1 N/A 1
RX_SK_VCAT_EN 1 ! 0
RX_SK_LCAS_EN 1 Yt 0
45 RX_SK_VCAT_RBID_SEL 1 N 0

55

60

65

Note
"While there are channels out of resct that are mapped to this port or while the

RX_SK_SW_CFG_EN is not set, the RX_SK_VC_EN and RX_SK_LCAS_EN
configuration parameters should not be changed.

6.4 Status

Parity errors in the channel configuration memories are
passed to the ALIG_RD module, which stores them in its
own channel status memories. This avoids the need to have
a status memory in this module.

The RX_CH_VCAT_FAIL_STICKY status parameters
are implemented in the CFR block using 1344 flops because
they need to be accessed by all three calendars in the CFR
block.

Parameter Size Value after initialization

RX_CH_VCAT_FAIL_STICKY 1 0

Note that RX_CH_VCAT_FAIL._STICKY is not a typical
status parameter in the sense that it is not a live status of
failure. It is more like an interrupt status parameter in the



US 9,461,942 B2

37

sense that if is latched value but also In that software needs
to write 1 to it to clear it. However, it is not exactly like the
other interrupt status parameters in that it does not generate
and interrupt and hence does not have an associated interrupt
enable parameter. This is intentional because the underlying
cause of a failure will generate an interrupt.
6.5 State
The CFR module uses flops to maintain failure state of
channels and VCGs. Also, the CFR module maintains a
counter for each channel to clear its failure/reset state to
ensure that channel resets/failures are held long enough for
all modules to see it. These counters are implemented using
a 1344x7 dual port memory (without parity protection). See
“vet_rx_cfr” micro architecture document for more details.
6.6 Interrupt Events
The CFR generates the following interrupt events to the
CFG:
RX_CH_CFG_PRTY_ERR_CHG
6.7 Calendar Generation
Calendar generation is based on the STS channel structure
configuration and four internal counters. See the
“VCT_Aligner” architecture and “vct_rx_cfr” micro archi-
tecture.
6.8 Failure Handling
See the “VCT_Aligner” architecture and “vet_rx_cfr”
7 The MFI Analyzer (ANA)
7.1 Overview
Referring to FIG. 5, an embodiment of an MFI analyzer
is illustrated. The ANA 502 interfaces with the cross connect
(CXC) 504, the desequencer 506, the align writer 508, the
input frame module (CFR) 510, the configuration module
(CFG) 512 and the CFR (514). The ANA further includes a
Channel (CH) State/status memory and Non-VCAT Ch data
memory. In one embodiment, the ANA performs the fol-
lowing functions:
Split VCAT packet traffic from non-VCAT packet traffic
based on the configuration stored in CFR module
On VCAT channels, strip all overhead and stuff bytes
except for H4/K4 bytes used for VCAT/LCAS before
passing them to the ALIG_WR
On non-VCAT packet channels, strip all overhead and
staff bytes before writing them to the internal data
buffer
For VCAT channels, implement MFI lock state machine
based on globally programmed match and mismatch
coasters stored in CFG module
Combine CXC alarms indicated on VCAT channels with
MFI loss of alignment to indicate a single alarm
condition to ALIG_WR module
Provide earnest MFI value of a channel to ALIG_WR
module along with data bytes (when the channel is not
in alarm condition)
Provide MFI lock status on each channel to software
Capture a snapshot of the MFI values on a VCAT channel
pair when requested by the CFG block
Extract extended signal label on low order channels
Merge VCAT packet traffic from DSQ with non-VCAT
packet traffic before delivering them to IFR
7.2 Interface to CFR
When ANA module gets a valid request from the CXC for
a given channel, it asks the CFR for configuration of that
channel. The channel is identified by an 11-bit ana_cfr_tid
signal constructed based on the channel id and type signals
from the CXC. The configuration information returned by
CFR for the channel includes the following:
If MFT analysis is enabled on this channel or not (RX_
CH_MFI_EN)

5

10

15

20

25

30

35

40

45

50

55

60

65

38

If the channel is in reset is the rest of the VCT_RX block
or not (RX_CH_SW_CFG_EN)
If the channel is associated with a VCAT enabled logical
port or not
The ana_cfr_tid signal is derived from CXC signals as
follows:

If (cxe__vet_rx_sts_vt) {
ana_ alig wr_tid = cxc_vet_rx_sts * 28 + cxc_vet_rx_gmp * 4 +

cxe_vet_rx_ vt
Else {
ana_ cfr_ tid = cxc__vet_rx_sts _master * 28

Note that ana_cfr_tid is always set based on exe_vc-
t_ix_sts_master. This way for a VC4-Nc contiguous concat-
enation group (where N>2) carrying non-VCAT data, a
single channel configuration entry is used.

The CFR passes the CH_CFG_PRTY_ERR condition as
part of the configuration response to the ANA. Although this
is not required by ANA to function, ANA stores this bit in
its state memory. When it detects a change it will generate
an interrupt to the CFG.

7.3 Interface to ALIG_WR

If the configuration result from CFR indicates that a
channel belongs to a VCG, the ANA will generate a request
to the ALIG_WR.

The ana_alig_wr_alm is a combination of the alarm signal
that the ANA GOt from the CXC for this channel and the
OOM1/2 status of that channel.

The ana_alig_wr_tid signal is derived from CXC signals
as follows:

If (cxe__vet_rx_sts_vt) {
ana_ alig wr_tid = cxc_vet_rx_sts * 28 + cxc_vet_rx_gmp * 4 +
cxXc_vet rx_ vt

Else If (! cxc_vet_rx_sts_aud) {
ana_ alig. wr_tid = cxc_vet_rx_sts * 28

Else {
ana__alig wr_tid = (cxc_vet_rx_sts % 16) * 28
The ana_alig_wr_sof signal is derived from CXC signals

as follows:

If (cxc_vet_rx_sts_vt) {
ana_ alig wr_sof = cxe_vet_rx_vt_sof

Else {
ana_alig wr_sof = (cxc_vet_rx__row == 0) &&
(cxc_vet_rx_col == 0)

b

The ana_wr_ch_ctrl_prty_err and ana_alig_wr_car_mfi
signals are based on the value of the current MFI field and
the parity error bit, respectively, of the state memory entry
at the location indexed by the value of ana_alig_wr_tid
signal.

7.4 Channel MFI Enable vs. Channel Reset

Channel MFI enable operation is independent of the
channel reset operation. The channel reset does not affect the
MEFT state machine and MFI capture functions of the ANA
module. Only MFI enable controls those functions. The
ANA module uses channel reset to determine if any data
should be passed through.



US 9,461,942 B2

39

If MFT analysis is enabled even when the channel is in
reset, the ANA processes MFI information and performs
MEFTI capture functions. This mode is useful to measure
differential delay changes that could occur on an existing
VCG due to new channel addition without actually impact-
ing data flow on that VCG. This is discussed in more detail
in section 7.8.

MEFT analysis may be disabled when the channel is not in
reset. This would not be used under normal operation. It is
useful for fast lock operation during verification. In this
mode, the ANA will be initially indicating alarm condition
to the ALIG_WR manager since OOM/LOM status bits are
set by default (i.e. when MFI enable is not set). For fast lock
operation, when the bench detects the first H4/K4 byte that
should be used, it sets the RX_CH_MFI_EN with back-door
write.

If'the channel is reset, the ANA does not send any requests
to the ALIG_WR or write any data to the non-VCAT data
buffer whether RX_VCAT_MFI_EN is set or not.

If a control parity error is detected on a channel note that
both the RX_VCAT_MFI_EN and RX_CH_SW_CFG_EN
bits need so be toggled. This is because the source of the
parity error could be in the state memory of ANA or state
memory of other schedules.

7.5 Interface to CFG

ANA module interfaces to the CFG module for the
following purposes:

To send interrupt events (i.e. OOM1/2, LOM, or CFG-

_PRTY_ERR states of a channel has changed)

To get the global configuration parameters used by MFI

lock state machine

To provide access to the channel MFI lock status stored in

ANA module

To receive MFI capture requests and to send captured

values

7.5.1 Channel Status

The LVC provides the following channel status informa-
tion to the CFG:

RX_CH_VCAT_OOM1

RX_CH_VCAT_OOM2

RX_CH_VCAT_LOM

RX_CH_ACC_ESL (only for low order channels)

RX_CH_CFG_PRTY_ERR

Note that even though the ANA does not have any channel
level configuration it gets the parity error condition for the
channel configuration memories of the CFR and stores it in
its state and state memories on behalf of the CFR. As shown
below it also generates an interrupt when there is a change.

Although the channel state memory of the ANA is pro-
tected, the ANA does not provide control parity error status
or generate interrupt for it. Instead, it passes the channel
control parity error condition to the ALIG_WR, which will
pass it to the ALIG_RD, which will then provide channel
control parity error status and generate an interrupt.

7.5.2 Interrupt

The LVC generates channel interrupt status set requests to
the CFG for the following events:

RX_CH_VCAT_OOM1_CHG

RX_CH_VCAT _OOM2_CHG

RX_CH_VCAT _LOM_CHG

RX_CH_ACC_ESL_CHG (only for low order channels)

RX_CH_CFG_PRTY_ERR_CHG

7.6 Interface to DSQ

ANA module gets VCAT data from DSQ to mentis it with
non-VCAT data before IFR. The interface from the DSQ
includes the dsq_ana_tid signal that ANA uses to pull data

10

15

20

25

30

40

45

50

55

60

40

from its internal data buffers for non-VCAT channels. This
is explained below in section 7.14.

7.7 MFI Lock State Machine

Refer to the “vct_mfi_ana_uarch” document.

Note that while not in LOM, the ANA passes the expected
MFT values to the ALIG_WR and not the values received in
H4/K4 bytes.

7.8 MFI Capture

7.8.1 Differential Delay Measurement

During provisioning, it is necessary to determine if the
differential delay between candidate member channels of a
VCG can be supported given the DRAM capacity allocated
for VCAT. Orion provides a mechanism to take a snapshot
of the MFI values of two channels. By doing this for all
appropriate member pair combinations, software can deter-
mine the maximum differential delay is the VCG.

When a new channel is to be added to a given LCAS
VCG, it is desirable to determine the maximum differential
delay that would be experienced in the VCG without actu-
ally associating the channel with that VCG. Doing so could
impact the data flow on that VCG (potentially cause stalls at
least). If an unused receive logical part were available, this
channel can first be mapped to such a port when it is brought
out of reset to avoid this issue. However, this may not be
always possible.

The solution for this is to make the RX _CH_VCAT_M-
FI_EN bit independent of the RX_CH_SW_CFG_EN bit.
The ANA uses the RX_CH_VCAT_MFI_EN as reset bit for
all MFT analysis based functions (including extended signal
label extraction). It uses the RX_CH_SW_CFG_EN bit as a
reset bit only for overhead/stuff pruning, data splitting and
data merging functions.

With this scheme, when differential delay measurement is
to be made on a channel that is to be added to a VCG, only
the RX_CH_VCAT _MFI_EN bit of that VCG will be set
initially. Once delay measurement is done and it is OK to
add this channel to the real VCG, the RX_CH_VCAT_SW_
CFG_EN bit can be cleared.

7.8.2 Interface & Operation

When software writes to the global RX_VCAT_MFI_
CAP_CHAN1/2 register in the CFG module, the CFG
module will send an MFI capture request to the ANA module
along with the identifies of the two channels. In response, the
ANA reads the MFI values it has in its state memory for
these two channels based on the CXC requests and sends a
done signal to the CFG along with the values it read.

The MFI analyzer does not check if the channels are in
MEFT lock or not when it responds to the CFG module with
the MFI values of the two channels stored in its state
memory. Software would check that both channels are in
MEFT lock before generating a capture request. However, if
either of the channels goes out of MFI lock by the time ANA
gets the request, the MFI value may not be valid. It is up to
software to ensure that, no MFI loss of lock is present after
the capture is done.

Note that the MFI analyzer does not check if the channels
are MFI enabled or whether they are VCAT channels. If
software tries to perform a capture on such channels, it will
get junk data back.

It is not possible for software to generate write requests
fast enough for the CFG to send ANA a capture request
while a previous one was in progress. So the ANA does not
need to worry about this case.

7.9 Extended Signal Label Extraction

On low order channels, ANA extracts the extended signal
label from 32-bit frames (aligned based on the 12-bit MFAS
pattern) formed out of the first bit of the K4 byte. If the same
value is received three times in a row on a channel, ANA
writes that value as the accepted extended signal label in the
status memory entry of that channel.



US 9,461,942 B2

41

Extended signal label extraction on a gives channel is
obviously dependent on the OOMI state of that channel.
While the channel is in OOMI1 state, the ANA does not
perform extraction.

When in IM1 state, the ANA knows if a K4 byte is
carrying an ESL bit or not based on the MF11 counter (i.e.
has to be between 11 and 18).

7.10 Configuration

The ANA module does not have any configuration param-
eters of its own.

7.11 State

7.11.1 Common State

The first MFI value read front channel state memory in
response to an MFI capture request needs to be stored in a
common register while waiting for the CXC calendar to bit
the second channel.

7.11.2 Channel State

The channel state parameters are grouped into a 1344x45
dual port memory. Both write and read accesses to it are
driven by CXC requests.

Some of the state parameters are applicable only to low
order. Hence there are two different views of the entries in
the channel state memory depending on if the entry is for a
high or low order channel

The RX_CH_CFG_PARITY_ERR_COPY bit stored in
this memory is not really a state parameter that ANA uses.
While all the other state bits are reset when RX_CH_VCAT _
MFI_EN is cleared by software, this bit is reset when
RX_CH_SW_CFG_EN is set.

7.11.3 High Order View of Channel State Memory Entries

The following table shows the structure of entries in this
memory.

10

15

20

25

30

42

7.12 Status

The status parameters related to MFI capture are kept in
the CFG block since they are global.

The channel status parameters are grouped into a 1344x12
dual port memory.

Value after initialization or when
MFI_EN (SW_CFG_EN for
PRTY__ERR) of channel is set

Parameter to zero (1 for PRTY__ERR)

RX_CH_VCAT_OOMI1 1
RX_CH_VCAT_OOM2 1
RX_CH_VCAT_LOM 1
RX_CH_ACC_ESL 8

1

1
1
1
ol
RX_CH_CFG_PRTY_ERR 0

Note

IThis parameter is applicable only to low order channels. Also, if the channel is in OOM1
state, its value will not be valid.

7.13 Non-VCAT Channel Data Buffer

The Non-VCAT channel data buffer is implemented using
two memories. The first one is a 1344x8 dual port memory
that is shared between low order channels and high order
channels except for VC4. The second one is a 256x8 dual
port memory that is used for VC4 channels.

A separate memory is used for VC4 channels because it
makes it easier to implement a single FIFO view for VC4-Nc
applications. A single FIFO view is required for the VC4-Nc
(N>=2) case to support the scenario where the receive
framers are configured in 4xOC-3/12 mode. In this case, the
CXC would present the bytes received on different framers
to the VCT_RX block in an interleaved fashion. However,
the 1x calendar used in the VCT_RX to pull non-VCAT data

Value after initialization or
when MFI_EN (SW__CFG_EN
for PRTY__ERR) of channel is

Parameter Size  set to zero (1 for PRTY__ERR)
RX_CH_VCAT_CUR_MFI 12 0
RX_CH_VCAT_MFI1_STATE 1 0
RX_CH_VCAT_MFI1_ MATCH_MISMATCH_CNT 3 0
RX_CH_VCAT_ MFI2_STATE 1 0
RX_CH_VCAT_MFI2_ MISMATCH 1 0
RX_CH_VCAT_MFI2_ MATCH_MISMATCH_CNT 3 0
RX_CH_VCAT_LOM_FRM_CNT 8 0
RX_CH_CFG_PRTY_ERR COPY 1 0
Unused 14 0
Odd parity 1 1

7.11.4 Low Order View of Channel State Memory Entries

Value after initialization or when
MFI_EN (SW__CFG_EN for
PRTY__ERR) of channel is set to zero (1

Parameter Size

for PRTY ERR)

RX_CH_VCAT_ CUR_MFI 1
RX_CH_VCAT_MFI1_STATE
RX_CH_VCAT_MFI1_ MATCH_MISMATCH_CNT
RX_CH_VCAT_MFI2_ STATE

RX_CH_VCAT_ MFI2_ MISMATCH
RX_CH_VCAT_MFI2_ MATCH_MISMATCH_CNT
RX_CH_VCAT_LOM_FRM_CNT
RX_CH_LAST_ESL_RPT_CNT

RX_CH_LAST ESL_RCVD
RX_CH_ESL_MISMATCH
RX_CH_CFG_PRTY_ERR_COPY

Odd parity

=== 00 Mo W= = WO

HOOO0OO0OODODO0OO0OODODOOO




US 9,461,942 B2

43

from the ANA assumes that the VC4 channels are inter-
leaved as if on an OC-48 line. Without the use a single FIFO
for a given VC4-Nc, this could cause data ordering to be
corrupted when the CXC docs not provide a byte during a
timeslot for that VC4-Nc (i.e. an idle slot).

The memory for VC4 channels is used to implement 16
FIFOs, each 16 bytes deep, to handle all possible VC4-Nc
combinations (including N=1 so as not to create a special
case).

Writes to both memories are drives by CXC requests, For
high-order timeslots associated with VC4 channels (i.e.
sts_vt=0, sts_vc4=1 from the CXX), the ANA uses the VC4
buffer memory. The CXC indicates the master STS channel
id of a slave STS within a VC4-Nc¢ (N>=1). The ANA can
use this to determine which VC4 FIFO to write the data to.

The reads from the buffer memories are driven by the
DSQ, which in turn is drives by the 1x calendar. For
timeslots associated with VC4 channels, the ANA cannot
determine which FIFO to use in the VC4 buffer memory
from the TID provided by the DSQ. The ANA keeps track
of the information provided by the CXC to determine this.
The ANA stores one bit for each VC4 to indicate if that VC4
is a slave or master of a VC4-Nc. For a slave VC4, the id of
the master VC4 can be determined from these state bits.

Note that a VC4 channel in VCT_RX have to be brought
out of reset after at least one calendar rotation from the time
that the channel is brought out of reset on basic SDH receive
side (including CXC). This is necessary because of the VC4
master state bits that ANA stores must be set before we
attempt to read from the VC4 data buffer.

The ANA pipeline shall provide bypass for read and write
collisions for the single byte buffers to avoid overflow. The
ANA uses 1344 flops to have a data valid bit per channel.
When a channel is reset (RX_CH_SW_CFG_EN is set), its
data valid bit shall be cleared.

It is not necessary to provide read and write bypass for the
16-byte VC4 FIFOs.

7.14 Merging VCAT and Non-VCAT Data

Merging of VCAT and Non-VCAT data is driven by the
dsq_ana_tid signal from the de-sequencer (DSQ). The ANA
reads the non-VCAT data buffer corresponding to the value
of this signal. If the dsq_ana_vid is not asserted and the
non-VCAT data buffer is not empty, then the data from the
VCAT data buffer is passed to the IFR. If the dsq_ana_vid
is asserted, then the dsq_ana_data is passed to the IFR. In
both cases, the data is qualified using the dsq_ana_lpid as the
LPID. If the dsq_ana_vid is not assorted and the non-VCAT
data buffer is empty, no data is passed to IFR.

Note that to prevent overflow of the non-VCAT data
buffer, we ensure that when the VCT_RX block comes out
of reset, all channels will be in reset (RX_CH_SW_CF-
G_EN=1) initially.

8 LCAS/VC Controller (LVC)

8.1 Overview

Referring to FIG. 6 an LVC 602 is illustrated, which
interfaces with the alignment module (ALN), the configu-
ration (CFG) 608 and the desequencer 606. The [LVC
includes a CH state memory, a CH status memory, a SK state
memory, a SK Status memory and a SO status memory. The
LVC module interfaces to the ALIG_RD, DSQ and CFG
modules. The basic functions of the LVC module are as
follows:

Extract forward control information (SQ and CTRL in

LCAS case) from H4/K4 bytes

Extract LCAS reverse control information from H4/K4

bytes

Perform CRC check on LCAS control packets

10

20

25

30

35

40

45

50

55

60

65

44

Perform dCRC set/clear function for each LCAS VCG

Perform GID check on LCAS VCGs

Capture GID values received by members of a given
LCAS VCG

Synchronize control (i.e. sequence) and data passed to the
DSQ

Handle LCAS channel reset and failure conditions based
on accepted configuration of channels

Detection of non-LCAS source while sink is configured as
LCAS

FIG. 4G: LVC Module

8.2 Interface to ALIG_RD

The ALIG_RD provides the following configuration and
control information to the LVC in each clock cycle along
with the id of the channel (i.e. TID), whether or not a valid
data (not just payload but also H4/K4) byte is available to
pass to the LVC on that channel in that cycle.

8.2.1 Configuration Information

Since all the configuration memories in the VCT_RX
block are maintained in the CFR module, the CFR module
needs to pipe the configuration (with the exception of
RX_SHORT_FRAME_EN) that LVC and downstream DSQ
needs to the LVV through the ALIG_RD. For each request
from the ALIG_RD to the LVC for a given channel, the LVC
needs the following configuration parameters that relate to
that channel for its own operation:

RX_CH_STS_VT

RX_CH_SK_LPID

RX_SK LCAS_EN

RX_CH_NL_VCAT_EXP_SQ

RX_CH_VCAT_ACCEPTED

RX_CH_LCAS_REV_EXT_EN

RX_CH_LCAS_REV_EXT_SO_LPID

The following calendar information that is required only
by the DSQ buffer flipping also needs to be provided to the
VLC so that it can pipe them to the DSQ. The VLC just
passes these parameters through without any processing.
This is not to say that these are the only parameters passed
to the DSQ.

RX_WID

RX_CH_VC4

RX_CH_STS_VTG_TYPE

The above calendar and configuration information shall
be provided to the LVC even when a channel is in fail state.

The DSQ needs to invalidate the current write butter when
an accepted member channel enters fail or reset state. In
order to do so, the RX_SK_LPID configuration parameter
needs to be passed to the DSQ at least in the first clock cycle
that a member channel enters reset state. When software
resets a channel, before changing the configuration of that
channel. It should wait long enough for the DSQ to see a
channel reset on that channel.

The CFR passes configuration and fail information for
non-VCAT channels to the ALIG_RD, which does not know
if a channel is a VCAT channel or not. But note that the
channel fail condition will never be set for such channels
since the ALIG_WR never writes to DRAM for a non-
VCAT channel and the ALIG_RD will never read any data
from DRAM. The ALIG_RD will simply never have valid
data for these channels to provide to the LVC but it will still
pipe the calendar and channel configuration to the LVC.

Note that CFR turns VCG fail into channel fail for all
member channels. Channel and VCG reset are passed sepa-
rately to LVC through ALIG_RD.



US 9,461,942 B2

45

8.2.2 Control Information

The ALIG_RD provides the following control informa-
tion to the ALIG_RD in every clock cycle:

Data valid

Channel fail condition

Channel reset condition

Sink port reset condition

H4/K4 byte indication

HO/LO MFI

SOF

The H4/K4 byte indication, HO/LLO MFI and SOF is only
meaningful when data valid is true and channel is not in
reset/fail state.

The HO/LO MFI counters should be provided not only in
H4/K4 byte clock cycles but also in SOF clock cycles (or in
general in all clock cycles when a channel is not in failure)

8.2.2.1 H4

The ALIG_RD sets the H4/K4 indication bit so the VLC
when the current channel is a high order channel and the
current byte is an H4 byte for that channel. All other bytes
for high order channels are payload bytes since TOH, other
HO POH and stuff bytes in the STS-1 frame are stripped
before writing its content to DRAM.

For an VC4/STS-3c¢ type VCG, the ALIG_RD passes the
H4 byte only for the master STS -1 to the LVC.

8.2.2.2 K4

The ALIG_RD sets the H4/K4 indication bit to the VIC
when the current channel is a low order channel and the
current byte is a K4 byte for that channel. All other bytes for
low order channel are payload bytes since TOH, other
HO/LO POH, and stuff bytes in a VT mapped the STS-1
frame are stripped before writing its content to DRAM.

8.3 Interface To DSQ

The LVC provides the following calendar, configuration
and sad control information to the DSQ in each clock cycle
along with a payload byte, if any.

8.3.1 Calendar & Configuration Information

RX_CH_STS_VT

RX_CH_STS _VTG_TYPE

RX_CH_VC4

RX_WID (The concatenated positions of all wheels)

RX_CH_SK_LPID

RX_SK_VCAT _EN

Note LVC does not use the RX_CH_STS_VTG_TYPE,
RX_CH_VC4 and RX_WID information; it just passes them
to the DSQ without any processing, which uses them for
buffer flipping.

The structure of the 13-bit RX_WID signal is as follows:

VC4_WID VC3_WID VC2_WID VCll_WID WC12_WID
] @ 3 @ @

8.3.2 Control Information
Payload data valid
Channel fail condition

10

20

25

30

35

40

45

50

55

46

8.4.1 States

The LVC provides the following status information to the
CFG:

RX_CH_LCAS_SQ/RX_CH_NL_VCAT_ACC_SQ (dif-

ferent views)

RX_CH_LCAS_CTRL

RX_CH_LCAS_CRC_ERR

RX_CH_NL_VCAT_SQM

RX_SK_LCAS_GID_ERR

RX_SO_LCAS_MST

RX_SO_LCAS_MS_ACK

8.4.2 Interrupt Status

The LVC generates interrupt status set requests to the
CFG for the following events:

RX_CH_LCAS_SQ_CHG/RX_CH_NL_VCAT-

_ACC_SQ_CHG

RX_CH_LCAS_CTRL_CHG

RX_CH_LCAS_ERR_CHG

RX_CH_LCAS_NL_SRC_CHG

RX_CH_NL_VCAT_SQM_CHG

RX_SK_LCAS_GID_ERR_CHG

RX_SO_LCAS_MST_CHG

RX_SO_LCAS_RS_ACK_CHG

8.5 State and Status Parameters

All of the state and status memories are dual ported. State
memories are accessed only by hardware.

One port of the states memories is dedicated for CPU
access. Note that CPU needs to write to the source port status
memory to initialize it. If a status read request from software
collides with a write request from hardware, new values
from the write request are passed as read results.

In the case of source port status memory, if a status write
from software collides with a status write request from
hardware, then software values should be written to
memory. This should not happen with proper software
behavior (software should disable LCAS reverse control
information for that source port before), but hardware should
be ready to deal with a collision.

Hardware will not access the same channel state mummy
entry more than once every 16-clock cycles (for STS-3c
VCGs). Similarly, hardware will not write to the same
channel status memory entry more than once every 16-clock
cycles. The micro-architecture design can take advantage of
this if necessary.

The channel state and status memory entries have a
different view depending if a channel is mapped to an LCAS
or non-LCAS VCG. Note that the reset values are such that
the parity is the same for both cases. Actually, to do this for
the status memories, a dummy bit is used.

The port level state and status parameters are applicable
for port configured for LCAS only.

Detailed descriptions on how these memories are used by
hardware are provided in the following sections.

8.5.1 Channel State

The channel state parameters are grouped into 1344x40
dual-port memory, shared by high order and low order
channels. The following tables show LCAS and non-LCAS
view of the entries in this memory.

8.5.1.1 LCAS View of Channel State Memory Entries

Channel reset condition 60
DNU .
Value after initialization
SQ Parameter Size or channel reset
8.4 Interface To CFG :
. RX_CH_LCAS_NEXT_SQ 8 0
The LVC generates interrupt status set requests to the 65 rx_cH_1.CAS_SQ_CHG 1 0
CFG. The CFG directs software status read (and write is the RX_CH_LCAS_NEXT_CTRL 6 o!

case of source port status memory) requests to the LVC.



US 9,461,942 B2

47

-continued

Value after initialization

Parameter Size or channel reset
RX_CH_LCAS_CTRL_CHG 1 0
RX_CH_LCAS_CRC_ALIGNED 1 0
RX_CH_LCAS_CRC_VLD 1 0
RX_CH_LCAS_CRC 8 0
RX_CH_LCAS_CRC_ERR_COPY 1 ot
RX_CH_LCAS_GID 1 ot
RX_CH_LCAS_MST 8 ot
RX_CH_LCAS_MST_CHG 1 ot
RX_CH_LCAS_RS_ACK 1 ot
RX_CH_LCAS_RS_ACK_CHG 1 ot
RX_CH_LCAS_ZERO_CRC 1 ot
RX_CH_LCAS_NL_SRC_COPY 1 ot
Odd parity 1 0

Note

These parameters do not need to have an initial value for operational purposes. However,
for parity protection, they are set to zeroes.

8.5.1.2 Non-LCAS View of Channel State Memory
Entries

Value after
initialization

Parameter Size or channel reset
RX_CH_NL_VCAT_PREV_SQ 8 ot
RX_CH_NL_VCAT_PREV_SQ_MATCH 1 0
RX_CH_NIL_VCAT PREV_SQ_RPT_CNT 2 0
RX_CH_NL_VCAT_SQM_COPY 1 1
RX_CH_NL_VCAT_ACC_SQ_CHG 1 0
Unused 26 0

Odd parity 1 0

Note

These parameters do not need to have an initial value for operational purposes. However,
for parity protection, they are set to zeroes.

8.5.2 Channel Status

The channel status parameters are grouped into 1344x15
dual-port memory, shared by high order and low order
channels. The following tables show LCAS and non-LCAS
view of the entries in this memory.

8.5.2.1 LCAS View of Channel Status Memory Entries

Value after initialization

Parameter Size or channel reset
RX_CH_LCAS_CUR_SQ 8 0
RX_CH_LCAS_CUR_CTRL 4 IDLE (0x5)
RX_CH_LCAS_CRC_ERR 1 0
RX_CH_LCAS_NL_SRC 1 0
Unused 1 1

In the case of LCAS VCGs, software always reads from
channel status memory to determine the sequence and
control fields received on a channel. This is important since
unlike the VCT_TX block, LCAS control information
changes do not happen under the control of the software and
it would be difficult for software to first determine which
memory has the new forward control information for a given
channel/VCG.

8.5.2.2 Non-LCAS View of Channel States Memory
Entries

Value after initialization or

Parameter Size channel reset
RX_CH_NL_VCAT ACC_SQ 8 0
RX_CH_NL_VCAT_SQM 1 1
Unused 6 0

10

15

20

25

30

35

45

55

60

65

48
8.5.3 Sink Port State

The sink port state parameters are implemented using
128%3 flops.

Value after initialization

Parameter Size or sink port reset
RX_SK_LCAS_GID_VLD 1 0
RX_SK_LCAS_GID 1 Undefined
RX_SK_LCAS_GID_MFI2_1SB 1 Undefined
RX_SK_LCAS_GID_ERR_COPY 1 0

8.5.4 Sink Port Status

The sink port status parameters are implemented using
128x1 flops.

Value after
Parameter Size initialization or sink port reset
RX_SK_LCAS_GID_ERR 1 0

8.5.5 Source Port Status

The source port status parameters are grouped into 128x
65 dual-port memory. The table below shows the structure of
the entries in this memory.

Value
Parameter Size after initialization
RX_SO_LCAS_MST 64 Undefined*
RX_SO_LCAS_RS_ACK 1 Undefined*

Note

These parameters do not need to have an initial value for operational purposes. There is
no source port reset but software can write the initial values.

8.6 Operation For Non-VCAT Channels

For non-VCAT channels, the ALIG_RD will never have
valid data for the LVC. However, the sink port LPID and the
accepted configuration of the channel will be passed to the
LVC along with the channel type and calendar information.

Since there will be no valid data, the LVC will not
perform any status or state update operations either for the
channel, or associated sink port and (dummy) source port.

8.7 LCAS Operation

LCAS operations are performed if the aln_rd_Iv_ch_sc_I-
cas_en signal is asserted in a given clock cycle. In this
section, we assume this is the case and do not explicitly
show it as part of conditions for updating state and status
information.

We divide specification of LCAS operations into the
following two areas:

Updating of state and status information

Passing of control information and payload data to the
DSQ

We also describe handling of resets/failures in detail.
8.7.1 Stats and Status Update
8.7.1.1 High Order

Table 8-1 specifies the LCAS stats and status update
operations performed by LVC for high order channels (we
assume ALIG_RD_STS_VT is false).



US 9,461,942 B2

49
TABLE 8-1

LCAS State/Status Update Operations On HO Channels

Timeslot type HO LCAS State and Status Update Operations

SOF-LCP Payload Read CH_LCAS_ CRC_VLD, CH_LCAS_ CRC_ERR_ COPY,
~ALIG_RD_ILVC_CH_RST CH_LCAS_NEXT_SQ and CH_LCAS_NEXT_CTRL

&& If (CH_LCAS_CRC_VLD && ~CH_LCAS_CRC_ERR_COPY) {
~ALIG_RD_ILVC_CH_FAIL CH_LCAS_CUR_SQ = CH_LCAS_NEXT_SQ

&& CH_LCAS_CUR_CTRL = CH_LCAS_NEXT_CTR
~ALIG_RD_ILVC_SK_RST Write CH_LCAS_ CUR_SQ and CH_LCAS_ CUR_CTRL

&&

ALIG_RD_IVC_DATA_ VLD

&&

ALIG_RD_ILVC_SOF &&
(ALIG_RD_LVC_MEFI[3:0]

Non-SOF-LCP Payload Read CH_LCAS_CUR_CTRL, CH_LCAS_CUR_SQ
~ALIG_RD_IVC_CH_RST

&&

~ALIG_RD_IVC_CH_FAIL

&&

~ALIG_RD_IVC_SK_RST

&&

ALIG_RD_IVC_DATA_ VLD

&&

~ALIG_RD_IVC_SOF &&
~ALIG_RD_IVC_H4_ K4

MST|[7:4] Read CH_LCAS_CRC
~ALIG_RD_LVC_CH_RST CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
&& ALIG_RD_IVC_H4 KA[7:4])
~ALIG_RD_LVC_CH FAIL  CH_LCAS_MST[7:4] = ALIG_RD_ILVC_ H4 K4[7:4]
&& CH_LCAS_CRC_ALIGNED = 1
~ALIG_RD_IVC_SK_RST CH_LCAS_CRC_VLD =1

&& Write CH_LCAS_ CRC, CH_LCAS_CRC_ALIGNED,
ALIG_RD_ILVC_DATA_VLD CH_LCAS_CRC_VLD, CH_LCAS_MST[7:4]

&&

ALIG_RD_LVC_H4 K4 &&
(ALIG_RD_LVC_MEFI[3:0]
—=3)

MST[3:0] Read CH_LCAS_CRC, CH_LCAS_MST[7:4] and SO_LCAS_MST
~ALIG_RD_LVC_CH_RST CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
&& ALIG_RD_IVC_H4 KA[7:4])
~ALIG_RD_LVC_CH_FAIL  CH_LCAS_MST[3:0] = ALIG_RD_LVC_H4_K4[7:4]
&& CH_LCAS_MST_CHG =0
~ALIG_RD_IVC_SK_RST If (ALIG_RD_LVC_MFI[8:7] == 0) {
&& MST_CHUNK_LSB_POS = { ALIG_RD_LVC_MFI[6:0], 3'b0}
ALIG_RD_LVC_DATA_VLD  MST_CHUNK_MSB_POS = MST_CHUNK_LSB_POS + 7
&& If
ALIG_RD_IVC_H4 K4 &&  (SO_LCAS_MST[MST_ CHUNK_ MSB_POS:MST CHUNK_LSB_POS]
(ALIG_RD_LVC_MEFI[3:0] != CH_LCAS_MST) {
=09 CH_LCAS_MST_CHG = 1
}

Write CH_LCAS__CRC, CH_LCAS_MSTI[3:0] and
CH_LCAS_MST_CHG

RS_ACK Read CH_LCAS_CRC and SO_LCAS_RS_ACK
~ALIG_RD_LVC_CH_RST CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
&& ALIG_RD_LVC_HA4[7:4])

~ALIG_RD_LVC_CH FAIL  CH_LCAS_RS_ACK = ALIG_RD_LVC_ H4 KA4[4]
&& CH_LCAS_RS_ACK CHG = (CH_LCAS_RS_ACK !=
~ALIG_RD_IVC_SK_RST SO_LCAS_RS_ACK)

&& Write CH_LCAS_ CRC, CH_LCAS_RS_ ACK and
ALIG_RD_LVC_DATA VLD CH_LCAS RS ACK_CHG

&&

ALIG_RD_IVC_H4_ K4 &&

(ALIG_RD_ LVC_MFI[3:0]

== 10)

Reserved Read CH__LCAS_ CRC
~ALIG_RD_ILVC_CH_RST CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
&& ALIG_RD_ LVC__H4_K4[7:4])
~ALIG_RD_IVC_CH_FAIL Write CH_LCAS_ CRC

&&

~ALIG_RD_ILVC_SK_RST

&&

ALIG_RD_IVC_DATA_VLD

&&

ALIG_RD_IVC_H4_ K4 &&

(ALIG_RD_ LVC_MFI[3:0]

>=11) &&



US 9,461,942 B2

51 52
TABLE 8-1-continued

LCAS State/Status Update Operations On HO Channels

Timeslot type

HO LCAS State and Status Update Operations

(ALIG_RD_LVC_MFI[3:0]
<=13)

SQ[7:4]
~ALIG_RD_LVC_CH_RST
&&
~ALIG_RD_LVC_CH_FAIL
&&
~ALIG_RD_IVC_SK_RST
&&
ALIG_RD_ILVC_DATA_ VLD
&&
ALIG_RD_LVC_H4_ K4 &&
(ALIG_RD_LVC_MEFI[3:0]
—=14)

SQ[3:0]
~ALIG_RD_LVC_CH_RST
&&
~ALIG_RD_LVC_CH_FAIL
&&
~ALIG_RD_IVC_SK_RST
&&
ALIG_RD_ILVC_DATA_ VLD
&&

ALIG_RD_LVC_H4_ K4 &&
(ALIG_RD_LVC_MEFI[3:0]

MFI2
~ALIG_RD_ILVC_CH_RST
&&

~ALIG_RD_ ILVC_CH_FAIL
&&
~ALIG_RD_ILVC_SK_RST
&&
ALIG_RD_IVC_DATA_VLD
&&
ALIG_RD_IVC_H4_K4 &&
(ALIG_RD_LVC_O_MFI1
>=0) &&
(ALIG_RD_LVC_MFI[3:0]
<=1)

CTRL
~ALIG_RD_ILVC_CH_RST
&&

~ALIG_RD_ ILVC_CH_FAIL
&&
~ALIG_RD_ILVC_SK_RST
&&
ALIG_RD_IVC_DATA_VLD
&&
ALIG_RD_IVC_H4_K4 &&
(ALIG_RD_LVC_MFI[3:0]
=2

GID
~ALIG_RD_ILVC_CH_RST
&&

~ALIG_RD_ ILVC_CH_FAIL
&&
~ALIG_RD_IVC_SK_RST
&&
ALIG_RD_IVC_DATA_VLD
&&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_ LVC_MFI[3:0]
=—=3)

Reserved
~ALIG_RD_IVC_CH_RST
&&

~ALIG_RD_ ILVC_CH_FAIL
&&
~ALIG_RD_IVC_SK_RST
&&
ALIG_RD_IVC_DATA_VLD
&&
ALIG_RD_IVC_H4_ K4 &&
(MFI[3:0] >= 4) &&

(MFI[3:0] <= 5)

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4 KA[7:4])

CH_LCAS_NEXT_SQ[7:4] = ALIG_RD_IVC_ H4 K4[7:4]
Write CH_LCAS_ CRC, and CH_LCAS_NEXT_SQ[7:4]

Read CH_LCAS_CRC, CH_LCAS_NEXT_SQ, CH_CUR_SQ
CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4 KA[7:4])

CH_LCAS_NEXT_SQ[3:0] = ALIG_RD_ILVC_H4 K4[7:4]
CH_LCAS_SQ_CHG = (CH_LCAS_NEXT_SQ I=
CH_LCAS_CUR_SQ)

Write CH_LCAS_ CRC, CH_LCAS_NEXT_SQ[3:0] and
CH_LCAS_CTRL_CHGG

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4 KA[7:4])

Write CH_LCAS__CRC

Read CH_LCAS_CRC, CH_LCAS_CUR_CTRL
CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4_KA[7:4])

CH_LCAS_NEXT_CTRL = ALIG_RD_IVC_H4 K4[7:4]
CH_LCAS_CTRL_CH = (CH_LCAS_NEXT_CTRL !=
CH_LCAS_CUR_CTRL)

Write CH_LCAS_ CRC, CH_LCAS_ NEXT_CTRL and
CH_LCAS_CTRL_CHG

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4 KA[7:4])

CH_LCAS_GID = ALIG_RD_ILVC_H4 K4[4]
Write CH_LCAS_ CRC and CH_LCAS_GID

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4 KA[7:4])

Write CH_LCAS__CRC



53

US 9,461,942 B2
54
TABLE 8-1-continued

LCAS State/Status Update Operations On HO Channels

Timeslot type HO LCAS State and Status Update Operations
CRC[7:4] Read CH_LCAS_CRC

~ALIG_RD_IVC_CH_RST CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_ CRC,
&& ALIG_RD_IVC_H4_KA4[7:4])

~ALIG_RD_LVC_CH_FAIL
&&
~ALIG_RD_IVC_SK_RST
&&
ALIG_RD_LVC_DATA_VLD
&&

ALIG_RD_LVC_H4 K4 &&
(MFI[3:0] == 6)

Channel Fail Only
ALIG_RD_IVC_CH_FAIL

Channel Reset
ALIG_RD_IVC_CH_RST

Sink Port Reset
ALIG_RD_IVC_SK_RST
&&
~ALIG_RD_ILVC_CH_RST

CH_LCAS_ZERO_CRC = (ALIG_RD_LVC_H4_K4[7:4] ==0)
Write CH_LCAS_ CRC and CH_LCAS_ ZERO_CRC

Read CH_LCAS_CRC_ALIGNED, CH_LCAS_CRC_VLD,
CH_LCAS_CRC, CH_LCAS_CRC_ERR_COPY, CH LCAS_NEXT_SQ,
CH_LCAS_SQ_CHG, CH_LCAS_NEXT_CTRL,
CH_LCAS_CTRL_CHG, CH_LCAS_MST, CH_LCAS_MST_CHG,
CH_LCAS_RS_ACK, CH _LCAS_RS_ACK CHG, CH_LCAS_GID,
CH_LCAS_ZERO_CRC, CH_LCAS_NL_SRC_COPY,
SK_LCAS_GID_VLD, SK_LCAS_GID, SK_LCAS_GID_MFI2_LSB,
SK_LCAS_GID_ERR, LCAS_ GID_CAP_VLD,
LCAS_ GID_CAP_ PORT, LCAS_GID_ CAP_ STARTED,
LCAS_GID_CAP_START MFI2_LSB,
LCAS_ GID_CAP_STOP_MFI2_LSB, CH_LCAS_GID_CAP_IDX
CH_LCAS_CRC = NEXT_CRC8 (CH_LCAS_CRC,
ALIG_RD_IVC_H4 KA[7:4])
If (~CH_LCAS_CRC_ALIGNED) {

CH_LCAS_CRC_ALIGNED = 1

Else If (~CH_LCAS_CRC_VLD) {
CH_LCAS_CRC_VILD=1

// CRC Count Capture
If (LCAS_ CRC_CNT_CAP_VLD =
If (CH_LCAS_CRC_VLD) {
CH_LCAS_CRC_ERR = (CH_LCAS_CRC {=0)
If (CH_LCAS_CRC_ERR == 0) {
If (CH_LCAS_SQ_CHG) {
Generate CH__LCAS_ SQ__CHG interrupt for this
channel

}
If (CH_LCAS_CTRL_CHG) {
Generate CH__LCAS_ SQ__CHG interrupt for this

channel

}

If (CH_LCAS_LCAS_REV_EXT_EN) {

MST_CHUNK_LSB_POS = {ALIG_RD_LVC_MFI[2:0],
360}
MST_CHUNK_MSB_POS = MST_CHUNK__LSB_POS + 7

SO_LCAS_MST[MST_CHUNK_MSB_ POS:MST__CHUNK_ LSB_ POS]
= CH_LCAS_MST
CH_LCAS_CRC_ALIGNED = 0
CH_LCAS_CRC_VLD =0
CH_LCAS_CRC=0
Write CH__LCAS_ CRC_ALIGNED, CH_LCAS_ CRC_VLD and
CH_LCAS_CRC
CH_LCAS_CRC_ALIGNED = 0
CH_LCAS_CRC_VLD =0
CH_LCAS_CRC=0
CH_LCAS_CRC_ERR =0
CH_LCAS_CRC_ERR_COPY =0
CH_LCAS_NL_SRC =0
CH_LCAS_NL_SRC_COPY =0
CH_LCAS_CUR_CTRL = IDLE
Write CH_LCAS_ CRC_ALIGNED, CH_LCAS_ CRC_VLD,
CH_LCAS_CRC, CH_LCAS_ CRC_ERR, CH_LCAS_NL_SRC,
CH_LCAS_NL_SRC_COPY and CH_LCAS_ CUR_CTRL
SK_LCAS_GID_VLD =0
SK_LCAS_GID_ERR =0
Write SK_LCAS_ GID_ VLD and SK_LCAS_ GID_ ERR




US 9,461,942 B2

55

Based on the update operation specifications in Table 8-1,
Table 8-2 summarizes the memory access requirements to
update the state and status memories for LCAS operation for
high order channels. It should be noted, for any type of
request from ALIG_RD, hardware does not need to access
the status memories for both reading and writing. Therefore,
one port of the status memories can be dedicated for CPU
access. If software tries so read a status memory entry at the
same time that hardware is trying to update it, the value
about to be written by hardware should be passed to the
software.

TABLE 8-2

Memory Access Patterns For
LCAS State/Status Update Operations on HO Channels

Hardware Memory Access
Pattern For LCAS HO

Channel Channel
State Status

Source

Timeslot Type Port Status

SOF-LCP Payload R
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
ALIG_RD_IVC_SOF &&
(ALIG_RD_LVC_MFI[3:0] ==

8)

Non-SOF-LCP Payload
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
~ALIG_RD_LVC_SOF &&
~ALIG_RD_LVC_H4_ K4
MST[7:4]
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_H4_ K4 &&
(MFI[3:0] == 8)

MST[3:0], RS_ACK
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] >=

9) &&

(ALIG_RD_LVC_MFI[3:0] <=

10)

Reserved, SQ[7:4]
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] >=

1) &&
(ALIG_RD_LVC_MFI[3:0] <=

14)

SQ[3:0]
~ALIG_RD_ILVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] ==

15)

MFI2

~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_LVC_SK_RST &&
ALIG_RD_IVC_DATA VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] >=

\

RW

RW

RW

RW

RW

10

15

20

25

30

35

40

45

50

55

60

65

56
TABLE 8-2-continued

Memory Access Patterns For

LCAS State/Status Update Operations on HO Channels

Hardware Memory Access

Pattern For LCAS HO

Channel Channel
State

Source

Timeslot Type Status Port Status

0) &&
(ALIG_RD_LVC_MFI[3:0] <=

D

CTRL
~ALIG_RD_ILVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST
&&ALIG_RD_IVC_DATA_ VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] ==

2)

GID, Reserved, CRC[7:4]
~ALIG_RD_ILVC_CH_RST &&
~ALIG_RD_LVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_IVC_DATA VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] >=

3) &&
(ALIG_RD_LVC_MFI[3:0] <=

6)

CRC[3:0]
~ALIG_RD_ILVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
ALIG_RD_IVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[3:0] ==

7

Channel Fail
ALIG_RD_IVC_CH_FAIL
Channel Reset
ALIG_RD_IVC_CH_RST

Sink Port Reset
ALIG_RD_IVC_SK_RST &&
~ALIG_RD_ILVC_CH_RST

RW R

RW

RW

Note that the tables above show that either a read or write
access is happening to a status memory for a given request
from ALIG_RD. In order for design to work with hardware
using a single port of the dual port status memories, the read
or write access to a given status memory needs to happen in
the same pipeline stage. The following table shows an
example of this.



US 9,461,942 B2

57
TABLE

58

Example LVC Pipeline

Rd/Wr
Req. To CH. Status
Ch. Status =777 > Ava
Reg. From Rd. Reg. Ch. State Memm.
ALIG. RD ToCh. ___._. - Ava
State
Mem. Rd/Wr
Req. To  ------ » So. Status
So. Status Ava.
Mem.

Wr. Req.
To Ch.
State
Mem.

Note that the channel state memory is storing reformation
about whether forward or reverse information has changed.
Therefore, its update has to wait until these memories are
read. At the same time, the decision to whether to write to
the status memory has to wait until the state memory is read
and CRC calculation is performed. Since read and write
access to the states memories need to be lined up, it can be
seen that the order of memory accesses in the pipeline must
be as shown above.

8.7.1.1.1 CRC Check

When a VCG gets aligned after initialization or after
recovery from a VC failure, the ALIG_RD will pass data to
the VLC always starting at a frame boundary. However, that
frame may not correspond to the frame where an LCAS
control packet starts (i.e. HO_MFI1 is 8) or the channel may
come out of reset after the H4 byte is received in that frame.
If that’s the case, the VL.C needs to wait for the beginning
of an LCAS control packet before reforming CRC checks.
For each channel, a CO_LCAS_CRC_ALIGNED state bit is
used for this purpose.

If a channel came out of reset/failure such that the first H4
byte it saw was not for HO_MFI1=8, then the channel will
have to wait till the H4 byte for HO_MFI1 is 7 before the
CH_LCAS_CRC_ALIGNED bit is set. But at this point
there would not be a valid CRC yet. So any LCAS control
packet fields that have been extracted cannot be used. Once
a complete LCAS control packet is processed, CH_L.-
CAS_CRC_VLD state variable will be set.

When the LVC is initialized, the CH_LCAS_CR-
C_ALIGNED and CH_LCAS_CRC_VLD state bits of all
channels are cleared. During normal operation, when a VCG
is reset or a failure is indicated on it, the LVC clears the
CH_LCAS_CRC_ALIGNED and CH_CRC_VLD bits of
that channel. Section 8.7.2 provides more information on
reset and failure handling.

Whenever an H4 byte is received for a given channel,
LVC reads the CH_LCAS_CRC state variable far that
channel and computes the next value of the LCAS_CRC
variable based on the high nibble of the received H4 byte. If
the ALIG_RD indicates HO_MFI1 value of 15 and the
CH_LCAS_CRC_ALIGNED is already set, then the LVC
checks to see that the updated LCAS_CRC value is equal to
zero or not. If not, this indicates that a CRC error has
happened. In either case, the LVC sets the CH_LCAS_CRC
state variable to zero to prepare for the next LCAS control
packet.

At the end of CRC check, before updating the CM_L-
CAS_CRC_ERR status bit, the LVC reads the current value
of CH_LCAS_CRC_ERR_COPY state bit to see there is a
change from the previous value. If so, CH_L-
CAS_CRC_ERR_CHG interrupt request is sent to the CFR
for this channel.

15

20

25

30

35

40

45

50

Note that the reason for keeping a copy of the CH_L-
CAS_CRC_ERR status bit in the channel state memory is to
avoid having to read the status memory to determine if an
interrupt request should be generated or not.

The LCAS_CRC_ERR status variable and its mirroring
CH_LCAS_CRC_ERR_COPY state variable are initialized
to zeroes. When a channel goes into reset/fail condition,
these variables are reset as well.

8.7.1.1.2 Persistent CRC Defect Check (dCRC)

Persistent CRC defects are counted at VCG level using
moving windows. The sizes of the set/clear windows and
set/clear thresholds are fixed globally for all VGGs. The
window length is specified in terms of number of multi-
frames. For each VCG, Orion counts the total number of
LCAS CRC errors detected on any of its members.

When the LVC is initialized, the SK_TL.CAS_DCRC status
bit, SK_TL.CAS_CRC_CNT and SK_IL.CAS_DCRC_WDW_
CNT fields of all ports are cleared. During normal operation,
when a sink port is reset, the LVC will clear these fields for
that port.

Whenever CRC of the current control packet is checked
on a given channel, the SK_LCAS_DCRC_WDW_CNT of
the containing LLCAS sink VCG is incremented by one. If a
CRC error were detected, then the CRC count of the LCAS
sink VCG would be incremented by one.

If the SK_LCAS_DCRC status bit were not set when the
SK_LCAS_DRC_WDW_CNT reaches the RX_L.LCAS_D-
CRC_NT1 value, then the CRC count is checked against the
LCAS_DCRC_K1 value. If the CRC count is equal or
higher, then the LCAS_DRCR status bit is set.

If the SK_LCAS_DCRC status bit were set when the
SK_LCAS_DCRC_WDW_CNT reaches the LCAS_D-
CRC_N2 value, then the SK_LCAS_CRC_CNT is checked
against the LCAS_DCRC_K2 value. If the SK_IL.-
CAS_CRC_CNT is equal or higher, then the LCAS_DRCR
status bit is set.

At the end of either a set or a clear window, the SK_L-
CAS_DRC_WDW_CNT and SK_LCAS_CRC_CNT are
reset to zero. Also, if the value of SK_LCAS_DCRC
changed, then the SK_LLCAS_DCRC_CHANGED interrupt
status bit is set.

8.7.1.1.3 Probing CRC Errors on Members of a VCG

The LVC can indicate that a dCRC defect is set/cleared on
a particular VCG. But unless software watches the LCAS
CRC status of all member channels at every multi-frame
(hard to do), it is not possible to determine underlying
conditions such as if one member had all most of the errors
or the errors were uniformly distributed over all members.
One sink VCG at a time may be selected for counting CRC
errors on all its members its detail.

Software selects the VCG to count member CRC errors or
by writing its port id to the global LCAS_DCRC_CAP_



US 9,461,942 B2

59

PORT register. Software also specifies the window (in
multi-frames) that the CRC error counts should be collected
using the global LCAS_DCRC_WS register. To initiate the
count, software clears the LCAS_DCRC_CAP_VLD bit.

When the counting window expires, Orion sets the
LCAS_DCRC_CAP_DONE interrupt status bit. The CRC
counts for up to 64 member channels are available from the
LCAS_CRC_CNT registers using indirect memory which is
addresses using the sequence numbers.

Note that hardware does not check if the selected port is
out of reset or not, and if so if it is an LCAS configured port
or not. If software does this by mistake, the CRC count
capture process will not start. Software can write a sane
value to the LCAS_DCRC_CAP_PORT to recover.

Hardware should not write to the LCAS_DCRC_CAP_
PORT or LCAS_DCRC_CAP_WS registers if there is a
CRC capture active (i.e. LCAS_DCRC_CAP_VLD=0).

8.7.1.1.4 Forward Control Information Update

Hardware writes the sequence and control fields received
in the current LCAS control packet into CH_LCAS_
NEXT_SQ and CH_LCAS_NEXT_CTRL state variables,
respectively. If this control packet did have a valid CRC and
it did not have a CRC error, then at the start of the frame that
begins the next LCAS control packet, hardware copies the
values of CH_LCAS NEXT SQ and CH_LCAS_NEX-
T_CTRL parameters to CH_LCAS_CUR_SQ and CH_L-
CAS_CUR_CTRL parameters, respectively. But if there is a
CRC error, the status parameters will not be updated.

For controlling rise passing of payload bytes to the DSQ,
the IVC uses the CH_LCAS_CUR_SQ and CH_LCAS_
CUR_CTRL stasis parameters. Therefore in the SOF byte,
which is a payload byte, the LVC does not read the channel
status memory but instead it uses the sequence and control
parameters to use from the state memory for this purpose.
This ensures that only one access is requited to the channel
status memory in the SOF cycle.

When the LVC receives the SQ and CTRL fields, it reads
the CH_LCAS_CUR_SQ and CH_LCAS_CUR_CTRL sta-
tus parameters and compares them with the received values.
If there is a difference, LVC sets the CH_LCAS_SQ_CH
and/or CH_LCAS_CTRL_CH bits.

At the end of the LCAS control packet, if there is valid
CRC and the CRC check is OK, and the CH_L-
CAS_SQ_CHG and/or CH_LCAS_CTRL_CHG bits are set
the LVC will generate an interrupt status set request to the
CFR for sequence and/or control word change.

The above discussion applies to the case where a channel
is not in reset/fail state. If a channel is in reset/fail state, hard
ware will behave as described in section 8.7.2.

8.7.1.1.5 Reverse Control Information Update

Reverse control information update is performed only if
the RX_Ch_LCAS_REV_EXT EN parameter of a channel
is set. In the descriptions below, we assume this is the case.

No attempt is made to check that the MST and RS_Ack
values received on the channels carrying reverse information
for the same source port in the same HO_MFI2 are all the
same. Note that any errors that hit these fields are likely to
be detected by CRC checks.

The discussion in this section applies to the case where a
channel is not in reset/fail state. If a channel is in reset/fail
condition, hardware will not attempt to update the reverse
control state/status and it will not generate interrupts for
changes on the channel’s associated source port, if any.

Software can write to source port status memory to
initialize MST and RS_ACK values. Typically, the MST bits

10

15

20

25

35

40

45

50

55

60

65

60

would be initialized to all ones (MST=Fail). The initial value
of RS_ACK does not matter except that software should
know what it is.

8.7.1.1.5.1 MST

The MST field received in an LCAS control packet on a
given channel is saved in the channel state memory entry for
that channel. As the low nibble of the MST field is received
on a given channel, depending on the MFI2 value, the LVC
also compares it to the corresponding MST bits in the source
port, status associated with this channel. If the comparison
indicates a difference, the CH_LCAS_MST_CHG state bit
for the channel is set.

Since the maximum number of channels we support is
limited to 64 in Orion, some LCAS control packets do not
carry any useful MST information. This is determined based
on MFI2. The MST chunk from source port, status memory
entry, if any, that will be used for comparison and will be
updated after is determined as follows:

If (ALIG_RD_ LVC_MFI[R:7] == 0) {
MST__Chunk_LSB_ Pos = {ALIG_RD_LVC_MFI[6:4], 3b'0}
MST__Chunk MSB_ Pos = MST_ Chunk LSB_ Position + 7
MST__Chunk =
SO_LCAS_MST[MST__Chunk_MSB_ Pos:MST__ Chunk_ LSB_ Pos]
}

// Else do not perform MST comparison and update

At the end of the LCAS control packet, if there is valid
CRC and the CRC check is OK and if LCAS reverse control
extraction is enabled on this channel, the LVC updates the
corresponding MST bits in the associated source port status
with the MST field received on this channel. If the CH_L-
CAS_MST_CHG bit is set, the LVC also generates an
SO_LCAS_MST_CHG interrupt for the source port associ-
ated with this channel.

8.7.1.1.5.2 RS_ACK

The RS_ACK bit received is an LCAS control packet on
a given channel is saved in the channel state memory entry
for that channel. At that time, the LVC also compares it to
the RS_ACK bit in the source port status associated with this
channel. If the comparison indicates a difference, the CH_L.-
CAS_RS_ACK_CHG stats bit for the channel is set.

At the end of the LCAS control packet, if there is valid
CRC and the CRC check is OK and if LCAS reverse control
extraction is enabled on this channel, the LVC updates the
RS_ACK bit in associated source port status with the
RS_ACK bit received on this channel. If the CH_LCAS_R-
S_ACK_CHG bit is set, the LVC also generates an SO_I -
CAS_RS_ACK_CHG interrupt for the source port associ-
ated with this channel.

8.7.1.1.6 GID Check

The LVC checks whether or not every accepted member
channel of a sink port have received the same GID bit in the
same LCAS control packet (i.e. the last one each member
received). If the GID bits on different channels do not match,
then LVC sets the SK_LCAS_GID_ERR status bit and
generates a sink port GID interrupt request if the status bit
has changed value. In addition to this status bit, the LVC
keeps the following sink port level state bits:

SK_LCAS_GID_VLD

SK_LCAS_GID

SK_LCAS_GID_MFI2_LSB

SK_LCAS_GID_ERR_COPY

Although the SK_LLCAS_GID_ERR_COPY state bit is
used in the design to avoid reading the sink port status to
determine if an interrupt should be generated, it is not
necessary to have it. Since the sink port status bits are in



US 9,461,942 B2

61

flops, they can be read at the same time as the sink port state
status bits are being read without worrying about conflicts
with software reads. The pseudo code does not show the use
of SK_LCAS_GID_ERR_COPY.

When the GID bit is received on a given channel, it is
stored in the channel state memory because LVC cannot act
on it till the CRC is verified on the LCAS control packet.

At the end of the LCAS control packet, if there is valid
CRC and the CRC check is OK, the LVC first checks to see
if the channel is accepted (and also that it has not just
received IDLE as the control word). If so, the LVC then
looks at the sink level GID state.

If SK_LCAS_GID_VLD is not set, it means that this is
the first time that GID comparison is being performed on this
sink port. In that case, the LVC sets SK_LCAS_GID_VLD,
copies CH_LCAS_GID to SK_LCAS_GID and sets the
SK_LCAS_GID_MFI2_LSB to HO_MFI2[0]. No error
check can be performed yet.

If SK_ LCAS_GID_VLD is set the LVC compares
SK_LCAS_GID_MFI12_LSB with HO_MFI2[0 ]. If they are
different, it means that we have moved to a new LCAS
control packet cycle for this sink port and the current
channel is the first channel that is at the end of the LCAS
control packet. In this case, the LVC sets the SK_LCAS_
GID to CH_LCAS_GID and sets the
SK_LCAS_GID_MFI2_LSB to HO_MFI2[0]. Again, no
error check can be performed yet.

If SK_LCAS_GID_VLD is set and
SK_LCAS_GID_MFI2_LSB is equal to LSB of HO_MFI2,
it means that the current channel, is not the first channel in
the sink port to compare the GID it received to the sink port
GID (which is set the GID received on the first channel). In
this case, the LVC compares CH_LCAS_GID with SK_IL.-
CAS_GID. If they were different, SK_LCAS_GID_ERR
and SK_LCAS_GID_ERR_COPY would be set. But before
doing so the LVC compares the new value of SK_LCAS_

10

15

20

25

30

35

62
GID_ERR with SK_LCAS_GID_ERR_COPY. If they are
different, then the LVC generates an SK_I.CAS_GID_ER-
R_CHG interrupt for the associated sink port.

8.7.1.1.7 Probing GID Values On Members Of a VCG

The LVC reports when a GID error is detected on a
particular VCG. At this level it is not possible to determine
the exact condition that causes the GID error. For example,
if one member bad a GID value different than the others, it
would not be possible to identify that member. One sink
VCG at a time may be selected for probing GID values of
its members in detail. Hardware captures the GID bits for all
members of the selected VCG and makes it available to the
software.

Software selects the VCG on which capture member
writing its port id to the global LCAS_GID_CAP_PORT
register. The GID capture is initiated by setting the global
LCAS_GID_CAP_VLD bit.

During the next control packet cycle, hardware will write
the received GID value of each member into the global
LCAS_GID_CAP status register based on its received
sequence number. Since the maximum size of a sink VCG in
Orion is 64, two 32-bit registers are used for this purpose.
After this, hardware will clear the LCAS_GID_CAP_VLD
bit and set the LCAS_GID_CAP_DONE interrupt status bit.

Note that hardware does not check if the selected port is
out of reset or not, and if so if it is an LCAS configured port
or not. If software does this by mistake, the GID capture
process will not start. Software can write a same value to the
LCAS_GID_CAP_PORT to recover.

Hardware should not write to the LCAS_GID_CAP_
PORT register if there is a GID probe active (i.e. LCAS_
GID_CAP_VLD=0.

8.7.1.2 Low Order

The table below specifies the LCAS state and status
update operations performed by LVC for low order channels
(we assume ALIG_RD_STS_VT is true).

TABLE 8-3

LCAS State/Status Update Operations On LO Channels

Timeslot Type

LO LCAS State and Status Update Operations

SOMF Payload
~ALIG_RD_ILVC_
CH_RST &&
~ALIG_RD_ILVC_
CH__FAIL &&
~ALIG_RD_LVC_
SK_RST &&
ALIG_RD_LVC_DATA__
VLD &&
ALIG_RD_LVC_SOF
&&
(ALIG_RD_IVC__
MFI[4:0] ==

0)

Non-SOMF

Payload
~ALIG_RD_ILVC_
CH_RST &&
~ALIG_RD_ILVC_
CH__FAIL &&
~ALIG_RD_ILVC_
SK_RST &&
ALIG_RD_LVC_DATA__
VLD &&
~ALIG_RD_LVC_
SOF &&
~ALIG_RD_ILVC_
H4_K4

MFI2[4]
~ALIG_RD_ILVC_

Read CH_LCAS_CRC_VLD, CH_LCAS_ CRC_ERR__COPFY,

CH_LCAS_NEXT__SQ and CH_LCAS_NEXT_CTRL

If (CH_LCAS_CRC_VLD && ~CH_LCAS_CRC_ERR_COPY) {
CH_LCAS_CUR_SQ = CH_LCAS_NEXT_SQ
CH_LCAS_CUR_CTRL = CH_LCAS_NEXT_CTRL
write CH__LCAS_ CUR__SQ and CH_LCAS_ CUR_CTRL

Read CH_LCAS_CUR_CTRL, CH_LCAS_CUR_SQ

Read CH_LCAS_CRC
CH_LCAS_CRC = NEXT__CRC3 (CH_LCAS_CRC,



US 9,461,942 B2

63
TABLE 8-3-continued

64

LCAS State/Status Update Operations On LO Channel

Timeslot Type

LO LCAS State and Status Update Operations

CH_RST &&
~ALIG_RD_IVC__
CH_TFAIL &&
~ALIG_RD_ILVC__
SK_RST &&

ALIG_RD_IVC_DATA

VLD &&

ALIG_RD_ILVC_H4

K4 &&
(ALIG_RD_LVC_
MFI[4:0] ==

0)

MFI2[3:0]
~ALIG_RD_LVC_
CH_RST &&
~ALIG_RD_LVC_
CH_FAIL &&
~ALIG_RD_LVC_
SK_RST &&

ALIG_RD_IVC_DATA

VLD &&

ALIG_RD_ILVC_H4

K4 &&
(ALIG_RD_LVC_
MFI[4:0] >=

1) &&
(ALIG_RD_LVC_
MFI[4:0] <=

4)

SQ[5:1]
~ALIG_RD_LVC_
CH_RST &&
~ALIG_RD_LVC_
CH_FAIL &&
~ALIG_RD_LVC_
SK_RST &&

ALIG_RD_IVC_DATA

VLD &&

ALIG_RD_ILVC_H4

K4 &&
(ALIG_RD_IVC__
MFI[4:0] >=

5) &&
(ALIG_RD_IVC__
MFI[4:0] <=

9)

SQ[0]
~ALIG_RD_IVC__
CH_RST &&
~ALIG_RD_IVC__
CH_FAIL &&
~ALIG_RD_IVC__
SK_RST &&

ALIG_RD_IVC_DATA

VLD &&

ALIG_RD_ILVC_H4

K4 &&
(ALIG_RD_LVC_
MFI[4:0] ==

10)

CTRL[3:1]
~ALIG_RD_LVC_
CH_RST &&
~ALIG_RD_LVC_
CH_FAIL &&
~ALIG_RD_LVC_
SK_RST &&

ALIG_RD_IVC_DATA

VLD &&

ALIG_RD_ILVC_H4

K4 &&
(ALIG_RD_LVC_
MFI[4:0] >=

1) &&
(ALIG_RD_LVC_
MFI[4:0] <=

ALIG_RD_LVC_H4_KA4[6])

CH_LCAS_CRC_ALIGNED = 1

CH_LCAS_CRC_VLD =1

Write CH_LCAS_ CRC, CH_LCAS_ CRC__ALIGNED, CH_LCAS_CRC_VLD

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

Write CH_LCAS_ CRC

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

BIT_POS = 10 - ALIG_RD_LVC_ MFI[4:0]
CH_LCAS_NEXT_SQ[BIT_POS] = ALIG_RD_LVC_H4 K4[6]
Write CH_LCAS_ CRC and CH_LCAS_ NEXT_SQ[BIT_POS]

Read CH_LCAS_CRC, CH_LCAS_CUR_SQ

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

CH_LCAS_NEXT_SQ[0] = ALIG_RD_ILVC_H4 KA4[6]
CH_LCAS_SQ_CHG = (CH_LCAS_NEXT_SQ t= CH_LCAS_CUR_SQ)
Write CH_LCAS_CRC, CH_LCAS_NEXT_SQ[SQ_BIT_POS] and
CH_LCAS_SQ_CHG

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

BIT_POS = 14 - ALIG_RD_LVC_ MFI[4:0]
CH_LCAS_NEXT_CTRL[BIT_POS] = ALIG_RD_LVC_H4_K4[6]
Write CH_LCAS_ CRC and CH_LCAS_ NEXT_CTRL[BIT_POS]



US 9,461,942 B2

65 66
TABLE 8-3-continued

LCAS State/Status Update Operations On LO Channel

Timeslot Type

LO LCAS State and Status Update Operations

13)

CTRL[0]
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&
(ALIG_RD_ILVC_
MFI[4:0] ==

14)

GID
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&
(ALIG_RD_ILVC_
MFI[4:0] ==

15)

Reserved
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&
(ALIG_RD_ILVC_
MFI[4:0] >=

16) &&
(ALIG_RD_ILVC_
MFI[4:0] <=

19)

RS_ACK
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&
(ALIG_RD_IVC__
MFI[4:0] ==

20)

MST[7:1]
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&
(ALIG_RD_ILVC_
MFI[4:0] >=

21) &&
(ALIG_RD_ILVC_
MFI[4:0] <=

Read CH_LCAS_CRC, CH_LCAS_CUR_CTRL

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_KA4[6])

CH_LCAS_NEXT_CTRL[0] = ALIG_RD_ILVC_H4 KA4[6]
CH_LCAS_CTRL_CHG = (CH_LCAS_NEXT_CTRL I=
CH_LCAS_CUR_CTRL)

Write CH_LCAS_ CRC, CH_LCAS_NEXT_CTRL[SQ_BIT_POS] and
CH_LCAS_CTRL_CHG

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

CH_LCAS_GID = ALIG_RD_LVC_H4_ KA4[6]
Write CH_LCAS_ CRC and CH_LCAS_ GID

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

Write CH_LCAS_CRC

Read CH_LCAS_ CRC and SO_LCAS_RS_ ACK

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

CH_LCAS_RS_ACK = ALIG_RD_LVC_H4 K4[6]
CH_LCAS_RS_ACK_CHG = (CH_LCAS_RS_ACK != SO_LCAS_RS_ ACK)
Write CH_LCAS_CRC, CH_LCAS_RS_ACK and CH_LCAS_RS_ACK_CHG

Read CH_LCAS_CRC

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

BIT_POS =28 - ALIG_RD_LVC_ MFI[4:0]
CH_LCAS_MST[BIT_POS] = ALIG_RD_LVC_H4 K4[6]
Write CH_LCAS_ CRC and CH_LCAS_ MST[BIT_POS]



US 9,461,942 B2

67
TABLE 8-3-continued

68

LCAS State/Status Update Operations On LO Channel

Timeslot Type

LO LCAS State and Status Update Operations

27)

MSTI[0]
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&
(ALIG_RD_ILVC_
MFI[4:0] ==

28)

CRC[2:1]
~ALIG_RD_IVC_
CH_RST &&
~ALIG_RD_IVC_
CH_FAIL &&
~ALIG_RD_IVC_
SK_RST &&
ALIG_RD_IVC_DATA__
VLD &&
ALIG_RD_IVC_H4_
K4 &&

(MFI[4:0] >=

29) &&

(MFI[4:0] <=

30)

Channel Fail
ALIG_RD_IVC_CH__
FAIL

Channel Reset
ALIG_RD_IVC_CH__
RST

Read CH_LCAS_CRC and SO_LCAS_MST

CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_KA4[6])

CH_LCAS_MST[0] = ALIG_RD_LVC_H4 K4[6]
MST_CHUNK_LSB_POS = {ALIG_RD_LVC_MFI[7:5], 3'b0}
MST_CHUNK_MSB_POS = MST_CHUNK_LSB_ POS + 7
CH_LCAS_MST_CHG = (CH_LCAS_MST =
SO_LCAS_MST[MST_CHUNK_MSB_POS: MST_CHUNK_LSB_POS])
Write CH_LCAS_CRC, CH_LCAS_MST[0] and CH_LCAS_MST_CHG

Read CH_LCAS_CRC and CH_LCAS_ZERO_CRC
CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

CH_LCAS_ZERO_CRC = (ALIG_RD_ILVC_H4 KA[6] == 0) &&
CH_LCAS_ZERO_CRC

Write CH_LCAS_CRC and CH_LCAS_ZERO_CRC

Read CH_LCAS_CRC__ALIGNED, CH_LCAS_CRC_VLD, CH_LCAS_CRC,
CH_LCAS_CRC_ERR_COPY, CH_LCAS_NEXT_SQ, CH_LCAS_SQ_CHG,
CH_LCAS_NEXT_CTRL, CH_LCAS_CTRL_CHG, CH_LCAS_MST,
CH_LCAS_MST_CHG, CH_LCAS_RS_ACK, CH_LCAS_RS_ACK_CHG,
CH_LCAS_GID, CH_LCAS_ZERO_CRC, CH_LCAS_NL_SRC_COPY,
SK_LCAS_GID_VLD, SK_LCAS_GID, SK_LCAS_GID_MFI2_LSB
CH_LCAS_CRC = NEXT_CRC3 (CH_LCAS_CRC,
ALIG_RD_LVC_H4_ KA4[6])

If (~CH_LCAS_CRC__ALIGNED) {

CH_LCAS_CRC_ALIGNED = 1

j
Else If (~CH_LCAS_CRC_VLD) {
CH_LCAS_CRC_VILD =1

}
If (CRC_VLD) {
CH_LCAS_CRC_ERR = (CH_LCAS_ CRC!=0)
If (CH_LCAS_CRC_ERR == 0) {
If (CH_LCAS_SQ_CHG) {
Generate CH__LCAS_ SQ__CHG interrupt for this channel

}
If (CH_LCAS_CTRL_CHG) {
Generate CH__LCAS_ SQ__CHG interrupt for this channel

b
If (CH_LCAS_LCAS_REV_EXT_EN) {
MST_CHUNK_LSB_POS = {ALIG_RD_LVC_MFI[7:5], 3'b0}
MST_CHUNK_MSB_POS = MST_CHUNK__LSB_POS + 7
SO_LCAS_MST[MST_CHUNK__MSB_POS:MST_CHUNK_LSB_POS] =
CH_LCAS_MST
If (CH_LCAS_MST_CHG) {
Generate SO__LCASMST__CHG interrupt for
CH_LCAS_REV__EXT__SO__LPID source port

SO_LCAS_RS_ACK = CH_LCAS_RS_ACK
If CH_LCAS_RS_ACK_CHG)

CH_LCAS_CRC_ALIGNED = 0

CH_LCAS_CRC_VLD =0

CH_LCAS_CRC =0

Write CH_LCAS_CRC_ALIGNED, CH_LCAS_CRC_ VLD and

CH_LCAS_CRC

CH_LCAS_CRC_ALIGNED = 0

CH_LCAS_CRC_VLD =0

CH_LCAS_CRC =0

CH_LCAS_CRC_ERR =0

CH_LCAS_CRC_ERR_COPY =0

CH_LCAS_NL_SRC =0

CH_LCAS_NL_SRC_COPY =0



US 9,461,942 B2

69
TABLE 8-3-continued

70

LCAS State/Status Update Operations On LO Channel

Timeslot Type

LO LCAS State and Status Update Operations

CH_LCAS_CUR_CTRL = IDLE

Write CH_LCAS__ CRC_ALIGNED, CH_LCAS_ CRC_VLD, CH_LCAS_ CRC,
CH_LCAS_CRC_ERR, CH_LCAS_NL_SRC, CH_LCAS_NL_SRC_COPY and

CH_LCAS_CUR_CTRL

Sink Port SK_LCAS_GID_VLD =0

Reset SK_LCAS_GID_ERR =0

ALIG_RD_ILVC_SK__ Write SK_LCAS__GID_VLD and SK_LCAS__GID_ERR =0
RST &&

~ALIG_RD_IVC__

CH_RST

The difference between high order and low order channels
are that the LCAS control packet is received one bit at a time
instead of 4 bits at a time. But since some of the fields are
larger than 4 bits anyway, this does not cause additional
complexity for LO compared to HO.

Note that the approach is the same for both high and low
order channels in terms of when update operations are
performed. It should also be noted that a different pipeline
design is not needed for LO channels.

8.7.2 Handling Sink Port Reset, Channel Failure and
Channel Reset

In discussing LVC behavior for VCG reset, channel
failure and channel reset it is useful to review the ALIG_RD
and software behavior first.

8.7.2.1 ALIG_RD and Software Behavior

The following summaries the failure/reset behavior of
ALIG_RD in coordination with software:

Failure or reset on an accepted member channel triggers
failure on the VCG, which then triggers failure on all
member channels whether they are accepted, or not.

Failure or reset on a non-accepted member channel does
not trigger failure on the VCG. During the timeslots of
the failed channel, the ALIG_RD does not pass valid
data to the LVC but continues to indicate the channel
fail state to the LVC. Unaccepted channels do not come
out of failure automatically. Software has to clear the
sticky failure status bit.

Software initiated sink port reset triggers channel fail (not
reset) on all member channels whether they are
accepted or not. Note that the ALIG_RD modules
passes sink port reset condition to the LVC separately.

For both reset and failure conditions that affect a VCG
(i.e. software sink port reset or accepted channel fail-
ure/reset), it is guaranteed (by the failure handler in
CFR) that the condition will be asserted long enough
for all member channels of a VCG to see it.

If an accepted member channel goes into failure and the
channel is not protected, the software clears the
accepted bit of that channel so the data from remaining
member channels, once they are realigned, will be
passed to the LVC and DSQ. Since the failed channel
is reconfigured as unaccepted, the failure state of that
channel will not cause the DSQ to invalidate the
buffers.

This is necessary for implementing the DNU mecha-
nism in LCAS. If the channel that failed were an active
member of the VCG, i.e. source was sending NORM/
EOS on that channel, then the source would start
sending DNU as the control word when it gets the
member channel fail status from the sink. The sink
would obviously not see the DNU control word but it

15

20

25

30

35

40

45

55

60

has to operate as if it did. This requires the sink to be
able to extract data from the remaining member chan-
nels.

If a failed accepted member channel is known by software
to be protected, then software will not clear the
accepted bit of that channel, and it will not send a fail
status to the source. When the protect channel kicks in,
the VCG will realign with all the members and ALI-
G_RD will start sending data to the LVC from all
member channels again. The assumption behind this
approach is that during provisioning, software may
have established that the differential delay change due
to switching to the protected path remains within
system limits. For pre-computed protection path appli-
cations, this assumption would hold.

A channel needs to be reset before it first becomes
member of an LCAS VCG. If such a channel is already
an accepted member of an LCAS VCG, then the LCAS
protocol will be used to delete that channel from feat
VCG first. At that point software will clear the accepted
bit of the channel before putting the channel in reset.

Note that if an accepted channel of an LCAS VCG is put
into reset, it will cause VCG to be put into reset condition.
Normally, this would not be done. An accepted channel will
first be removed using the LCAS delete procedure and then
the accepted bit on that channel will be cleared by software
before it puts the channel in reset. But an accepted channel
may be reset without following these steps when non-
recoverable VCG level errors are detected. However, before
a channel is brought out of by software reset software should
clear its accepted bit.

It may not be possible to recover from some network
failures automatically. For example, the differential
delay may become excessive (typically after a network
reconfiguration that may or may not be triggered by a
protection mechanism) or a protocol error (e.g. invalid
sequence number and/or sequence number combina-
tions on accepted channels) may be detected by soft-
ware. In these cases, the VCG may also be reset by
software (or all channels may be put into reset) without
following planned member removal procedures. Note
that software may still send fail status on all member
channels of this VCG by configuring the VCT_TX
block.

Note that in a given clock cycle, sink port reset is
meaningful only of the channel is not in reset. This is
because if the channel is in reset, then its RX_CH_SK_LPID
parameter is not valid.

8.7.2.2 LVC Behavior

Depending on the accepted configuration bit of a channel,
the LVC behaves as follows in response to channel reset/
failure indications on that channel from the ALIG_RD:



US 9,461,942 B2

71

When the LVC sees a channel failure indication on a
channel (accepted or not), it sets the channel’s CH_I-
CAS_CRC_ALIGNED, CH_LCAS_CRC_VLD and
CH_LCAS_CRC state variables to zero respectively.

When a channel is reset, the LVC resets the channel’s
state and status variables to their initial values.

While a channel remains in fail or reset state or the
associated sink port is in a reset state, the LVC does not
process the H4/K4 bytes on that channel to update
state/status variables (channel or port level) associated
with that channel. However, the LVC passes the cal-
endar information and the configuration, reset and fail
state of the channel to the DSQ in the clock cycles for
that channel.

When the sink port is reset, the RX_SK_GID_VLD state
bit and RX_SK_GID_ERR status bit are reset.

The channel failure/reset or sink port reset may be indi-
cated to the LVC at any point within a frame. During such
clock cycles, instead of the state/status update operations
discussed in the section 8.7.1, the hardware shall set the state
and status variables as described above.

8.7.3 Passing Control and Payload Data to DSQ

The following pseudo-code formally specifies how the
LVC passes control and payload data to the DSQ:

10

15

20

72
way it is done SQ module in the VCT_TX block. For
example, all STS-1 type VCGs flip their read/write buffers
every time STS number generated by the calendar is zero.
This is possible because the ALIG_RD read manager
ensures that a VCG never stalls in the middle of a calendar
rotation.

There is one important difference between the receive side
and transmit side with respect to buffer flipping though. On
the transmit side buffer flipping is done only when the
current byte pulled by the CXC is a payload byte. The
receive side cannot use current byte pushed by ALIG RD
being a payload byte as a condition. This is because if a
channel is its failure, the timeslots for that channel cannot be
classified as a payload or an H4 byte timeslot.

To deal with this issue, the LVC sends request to the DSQ
in every clock cycle whether or not there is a valid data from
the ALIG_RD in that cycle, and if so whether or not the data
is a payload or H4/K4 byte. However, the DNU bit is set for
all cases but payload cycles for accepted channels that are
not in reset/fail state and that do not have their
CUR_CH_SQ state variables set to DNU (or NEX-
T_CH_SQ if SOF is true).

When the DSQ tries to set the DNU bit of the current write
buffer location indicated by the CH_CUR_SQ for non-

If (~ALIG_RD_LVC_CH_RST) {
If (ALIG_RD_ILVC_CH_ACCEPTED) {
If (~ALIG_RD_LVC_DATA_VLD | ALIG_RD_LVC_H4_X4) {
LVC_DSQ_DNU =1

Else {
If ((ALIG_RD_LVC_SOF == 1) &&

((~ALIG_RD_ILVC_STS_VT && (ALIG_RD_LVC_MFI[3:0] == 8))

(ALIG_RD_LVC_STS) && (ALIG_RD_ILVC_MFI[4:0] == 0))) {
If (CH_LCAS_NEXT_CTRL == NORM) | (CH_LCAS_NEXT_CTRL ==

EOS)) {
LVC_DSQ_DNU =0

Else {
LVC_DSQ_DNU =1

LVC_DSQ_CH_SQ = CH_LCAS_NEXT_S8SQ

Else {

If (CH_LCAS_CUR_CTRL == NORM) | (CH_LCAS_CUR_CTRL ==

EOS)) {
LVC_DSQ_DNU =0

Else {
LVC_DSQ_DNU =1

LVC_DSQ_CH_SQ = CH_CUR_LCAS_8SQ

¥
¥
)
Else {
LVC_DSQ_DNU = 1 // Dummy since channel in reset
LVC_DSQ_CH_SQ =0 // Dummy since channel in reset

}

LVC_DSQ_CH_DATA = ALIG_RD_ILVC_CH_DATA
LVC_DSQ_CH_FAIL = ALIG_RD_ILVC_CH_FAIL
LVC_DSQ_CH_RST = ALIG_RD_IVC_CH_RST
LVC_DSQ_SK_RST = ALIG_RD_IVC_SK_RST
LVC_DSQ_CH_ACCEPTED = ALIG_RD_IVC_CH_ACCEPTED
LVC_DSQ_SK_LPID = ALIG_RD_ILVC_SK_LPID
LVC_DSQ_WID = ALIG_RD_IVC_WID
LVC_DSQ_CH_STS_VT =ALIG_RD_ILVC_CH_STS_VT
LVC_DSQ_CH_STS_VC4 = ALIG_RD_IVC_CH_STS_VC4

LVC_DSQ_CH_STS_VTG_TYPE = ALIG_RD_IVC_CH_STS_VTG_TYPE

As described in section 9, read/write buffer flipping in the
DSQ module is based on calendar rotations, similar to the

65

accepted channels, it might see that the value of
CH_CUR_SQ may be greater than the size of the reorder



and channel fail condition to the DSQ. If a channel is not
accepted, then the DSQ ignores the fail condition. It will also
not update the data buffer in that timeslot. This ensures that
if an unaccepted channel has a sequence number that col-
lides with that of an accepted channel, this will not cause the
VCG data flow to fail. While the above condition is not legal
in LCAS protocol, doing so will prevent unnecessary data
corruption. Note that for unaccepted channels, the DSQ will
pass the calendar and the sink port of the channel to the
ANA.

US 9,461,942 B2

73

buffer of the associated VCG. In such a case, the DSQ

silently ignores the request. If this happens for accepted

channels, this would be a protocol error. See section 8.7.4 for
LCAS protocol error handling.

During timeslots where an accepted channel does not 3

have valid data or the data is an H4/K4 byte, the LVC sets
the DNU bit to the DSQ. Except for the first payload byte of
the frame in which an LCAS control packet starts, during
payload timeslots of an accepted channel, the LVC sets the
DNU bit only when the channel has its CH_CUR_CTRL
status variable set to DNU, the LVC sets the DNU bit for that
channel.

Note that the LVC passes both the accepted configuration

8.7.4 LCAS Protocol Error Handling 25

All LCAS protocol errors besides CRC and GID errors

will be detected by software. The following is a list of
possible LCAS protocol errors:

Invalid control word (e.g. illegal or unexpected value)

Out of range sequence numbers (e.g. value on accepted
channel greater than VCG size)

Invalid combination of sequence numbers and/or control
words on accepted members (e.g. gaps or overlap in
sequence numbers, sequence number not compatible
with the control word, etc)

30

74

8.8 Non-LCAS Operation

8.8.1 State and Status Update

In non-LLCAS operation, i.e. when the LVC determines
that a channel is mapped to a non-LCAS sink port, the LVC
does not extract and process control word, GID, MST and
RS_ACK fields received in the H4/K4 bytes and it does not
perform any CRC checks.

The LVC extracts and processes only the SQ field far
non-LCAS channels. The LVC stores the extracted SQ field
in the CH_PREV_SQ state variable. Before updating it
when a new SQ value is received, the LVC reads the
previous value in that state variable to compare it with the
received value.

If the two are the same, then LVC increments the CH_N-
L_VCAT_PREV_SQ_RPT_CNT state variable for that
channel. If the counter value reaches three, than the received
value is copied over to the CH_VC_ACC_SQ status param-
eter. Note that counter does not roll over from three. Based
on if the CH_VC_ACC_SQ status parameter is the same or
different than the expected sequence for this channel, then
LVC sets or clears the CH_VC_SQM status variable. If the
value of the status variable changed, then LVC will generate
a CH_VC_SQM_CHG interrupt for this channel.

If the two are different, then LVC sets the CH_NL_V-
CAT_PREV_SQ_RPT_CNT to zero. This counter is also
reset when a channel is in reset/fail state.

Note that even though the memory access requirements
are not the same for non-LLCAS channels, the same pipeline
is used for both LCAS and non-LLCAS channels. The non-
LCAS case is a subset of LCAS case in that it has less
required memory accesses (e.g. no need to read channel
status memory).

8.8.4.1 High Order

The table below specifies the non-LLCAS state and status
update operations performed by LVC for high order chan-
nels.

TABLE 8-4

Non-LCAS VCAT State/Status Update Operations On HO Channels

Timeslot Type

HO Non-LCAS State and Status Update Operations

Payload
~ALIG_RD_IVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_IVC_DATA_ VLD &&
~ ALIG_RD_IVC_H4_K4

MFI2, Reserved
~ALIG_RD_IVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_IVC_DATA_VLD &&
ALIG_RD_IVC_H4_K4 &&
(ALIG_RD_ LVC_MFI[3:0] >=

0) &&

(ALIG_RD_ LVC_MFI[3:0] <=

13)

SQ[7:4]

~ALIG_RD_IVC_RST &&
ALIG_RD_IVC_DATA_VLD &&
ALIG_RD_IVC_H4 K4 &&
(ALIG_RD_ LVC_MFI[3:0] ==

14)

SQ[3:0]
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_LVC_DATA VLD &&
ALIG_RD_LVC_H4 K4 &&

Read CH_NL_VCAT PREV_SQ and
CH_LCAS_PREV_SQ_ MATCH
CH_NL_VCAT PREV_SQ_ MATCH =
(CH_NL_VCAT_PREV_SQ[7:4] ==
ALIG_RD_LVC_H4 KA[7:4])
CH_NL_VCAT PREV_SQ[7:4] =
ALIG_RD_LVC_H4_KA[7:4]
Write CH_NL_VCAT PREV_SQ[7:4] and
CH_NL_VCAT PREV_SQ_ MATCH
Read CH_NL_VCAT_ PREV_SQ,
CH_NL_VCAT PREV_SQ_ MATCH,
CH_NL_VCAT PREV_SQ_ RPT_CNT and
CH_NL_VCAT_SQM_COPY
If (CH_NL_VCAT PREV_SQ_MATCH) {
CH_NL_VCAT PREV_SO_MATCH =



75

US 9,461,942 B2

TABLE 8-4-continued

Non-LCAS VCAT State/Status Update Operations On HO Channels

Timeslot Type

HO Non-LCAS State and Status Update Operations

(ALIG_RD_LVC_ MFI[3:0]
—=15)

Channel Fail
ALIG_RD_ILVC_CH_FAIL

Channel Reset
ALIG_RD_IVC_CH_RST

Sink Port Reset
ALIG_RD_IVC_SK_RST &&
~ALIG_RD_ILVC_CH_RST

(CH_NL_VCAT_PREV_SQ[3:0] ==
ALIG_RD_LVC_H4 KA[7:4])

h
If (CH_NL__VCAT_PREV_SQ_MATCH) {
If (CH_NL_VCAT_PREV_SQ_RPT_CNT < 3) {
CH_NL_VCAT_PREV_SQ_RPT_CNT++

}

CH_NL_VCAT_ PREV_SQ_ MATCH =0
CH_NL_VCAT PREV_SQ[3:0] =
ALIG_RD_LVC_H4 K4[7:4]
If (CH_NL_VCAT_PREV_SQ_RPT_CNT == 3) {
CH_NL_VCAT SQM = (ALIG_RD_LVC_EXP_SQ !=
CH_NL_VCAT_PREV_SQ)
If (CH_NL_VCAT_SQM != CH_NL_VCAT SQM_COPY)

{
Generate CH_NL_ VCAT__SQM interrupt for
this channel

}
CH_NL_VCAT_SQM_COPY = CH_NL_VCAT_SQM
CH_NL_VCAT_ACC_SQ = CH_NL_VCAT_PREV_SQ

Write CH_NL_VCAT PREV_ SQ[7:4],
CH_NL_VCAT_SQM_COPY, CH_NL_VCAT_SQM,
CH_NL_VCAT PREV_SQ RPT_CNT

Write CH_NL_VCAT ACC_SQ if
(CH_NL_VCAT PREV_SQ_RPT_CNT == 3)
CH_NL_VCAT PREV_SQ RPT_CNT =0
CH_NL_VCAT PREV_SQ MATCH =0

Write CH_NL_VCAT PREV_SQ_RPT_CNT and
CH_NL_VCAT_PREV_SQ_MATCH
CH_NL_VCAT PREV_SQ RPT CNT =0
CH_NL_VCAT PREV_SQ MATCH =0
CH_NL_VCAT_ SQM = 1
CH_NL_VCAT_ACC_SQ =0

Write CH_NL_VCAT PREV_SQ_RPT_CNT,

CH_NL_VCAT_PREV_SQ_MATCH, CH_NL_ VCAT__SQM and

CH_NL_VCAT_ACC_S8Q

Based on the update operation specifications in Table 8-4,
Table 8-5 below summarizes the memory access require-
ments to update the state and status memories for non-LCAS
VCAT operation for high order channels.

40

76

TABLE 8-5-continued

Memory Access Patterns For State/Status Update
on Non-LCAS VCAT HO Channels

45

TABLE 8-5

Memory Access Patterns For State/Status Update

on Non-LCAS VCAT HO Channels

Timeslot Type

Timeslot Type

Hardware Memory Access
Pattern For Non-LCAS HO

Channel State Channel Status

50
Hardware Memory Access

Pattern For Non-LCAS HO 13)

SQ[7:4]

Channel State Channel Status ~ALIG RD_IVC CH RST &&

Payload
~ALIG_RD_IVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_IVC_DATA_VLD &&
~ALIG_RD_IVC_H4_K4

MFI2, Reserved
~ALIG_RD_IVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_ RST &&
ALIG_RD_IVC_DATA_VLD &&
ALIG_RD_IVC_H4_K4 &&
(ALIG_RD_ILVC__ MFI[3:0] >=

0) &&

(ALIG_RD_ LVC_MFI[3:0] <=

~ALIG_RD_IVC_CH_FAIL &&

55 ~ALIG_RD_IVC_SK_RST

&&ALIG__RD_ILVC_DATA_ VLD
&& ALIG_RD_ILVC_H4_ K4 &&

(ALIG_RD_IVC_MFI[3:0] ==

14)
60 SQ[3:0]

~ALIG_RD_IVC_CH_RST &&

~ALIG_RD_IVC_CH_FAIL &&

~ALIG_RD_IVC_SK_RST &&

ALIG_RD_IVC_DATA_ VLD &&

65 ALIG_RD_IVC_H4 K4 &&
(ALIG_RD_ILVC_MFI[3:0] ==

RW —

RW w



US 9,461,942 B2

TABLE 8-5-continued

Memory Access Patterns For State/Status Update
on Non-LCAS VCAT HO Channels

Timeslot Type

Hardware Memory Access
Pattern For Non-LCAS HO

Channel State Channel Status

15)

Channel Fail
ALIG_RD_ILVC_RST
Channel Reset
ALIG_RD_ILVC_RST

10

78
TABLE 8-5-continued

Memory Access Patterns For State/Status Update
on Non-LCAS VCAT HO Channels

Hardware Memory Access
Pattern For Non-LCAS HO

Timeslot Type

Channel State Channel Status

Sink Port Reset — —
ALIG_RD_IVC_SK_RST &&
~ALIG_RD_IVC_CH_RST

W —
8.8.1.2 Low Order
W W The table below specifies the non-LCAS VCAT state and
status update operations performed by LVC for low order
chancels (we assume ALIG_RD_STS_VT is true).
TABLE 8-6
Non-LCAS VCAT State/Status Update Operations On LO Channels
Timeslot Type LO Non-LCAS VCAT State and Status Update Operations
Payload —

~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_IVC_CH_ FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_LVC_DATA_VLD &&
~ALIG_RD_LVC_H4 K4

MFI2

~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_LVC_DATA VLD &&
ALIG_RD_LVC_H4 K4 &&
(ALIG_RD_LVC_ MFI[4:0]

>=0) &&
(ALIG_RD_LVC_MFI[4:0]

<=4)

SQ[5:1]
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_IVC_CH_ FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_LVC_DATA VLD &&
ALIG_RD_LVC_H4 K4 &&
(ALIG_RD_LVC_MFI[4:0]

>=5) &&
(ALIG_RD_LVC_MFI[4:0]

<=9)

SQO]
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_IVC_CH_ FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_LVC_DATA VLD &&
ALIG_RD_LVC_H4 K4 &&
(ALIG_RD_LVC_MFI[4:0]

== 10)

Read CH_NL_VCAT_ PREV_SQ and
CH_NL_VCAT_ PREV_SQ_ MATCH
BIT_POS =10 - ALIG_RD_LVC_ MFI[4:0]
If (| CH_NL_VCAT PREV_SQ_ MATCH) {
CH_NL_VCAT PREV_SQ_ MATCH =
(CH_NL_VCAT PREV_SQ[BIT_POS] ==
ALIG_RD_LVC_H4 KA[6])

}

CH_NL_VCAT_ PREV_SQ[BIT_POS] =

ALIG_RD_LVC_H4 KA[6]

Write CH_NL_VCAT PREV_ SQ[BIT_POS] and

CH_NL_VCAT_PREV_SQ_MATCH

Read CH_NL_VCAT PREV_SQ,

CH_NL_VCAT PREV_SQ_ MATCH,

CH_NL_VCAT PREV_SQ RPT_CNT and

CH_NL_VCAT_SQM_COPY

If (CH_NL_VCAT PREV_SQ_MATCH) {
CH_NL_VCAT PREV_SO_MATCH =

(CH_NL_VCAT_PREV_SQ[0] ==
ALIG_RD_LVC_H4_KA[6])

h
If (CH_NL_VCAT_PREV_SQ_MATCH) {
If (CH_NL_VCAT_PREV_SQ_RPT_CNT < 3) {
CH_NL_VCAT_PREV_SQ_RPT_CNT++

}

éHfNL?VCAT?PREV?SQfMATCH =0
CH_NL_VCAT_PREV_SQ[0] = ALIG_RD_LVC_H4 K4[6]
If (CH_NL_VCAT_PREV_SQ_RPT_CNT == 3) {
CH_NL_VCAT_SQM = (ALIG_RD_LVC_EXP_SQ !=
CH_NL_VCAT_PREV_SQ)
If (CH_NL__VCAT_SQM != CH_NL_VCAT_SQM_COPY) {
Generate CH_NL_ VCAT__SQM interrupt for this
channel

¥
CH_NL_VCAT_SQM_COPY = CH_NL_VCAT_SQM
CH_NL_VCAT_ACC_SQ=CH_NL_VCAT_PREV_SQ

Write CH_NL_VCAT PREV_SQJ0],



US 9,461,942 B2

79 80
TABLE 8-6-continued
Non-LCAS VCAT State/Status Update Operations On LO Channels
Timeslot Type LO Non-LCAS VCAT State and Status Update Operations
CH_NL_VCAT_SQM_COPY, CH_NL_VCAT_SQM,
CH_NL_VCAT_PREV_SQ_RPT_CNT
Write CH_NL_VCAT_ACC_SQ if
(CH_NL_VCAT_PREV_SQ_RPT_CNT == 3)
Reserved —
~ALIG_RD_LVC_CH_RST &&
~ALIG_RD_IVC_CH_FAIL &&
~ALIG_RD_IVC_SK_RST &&
ALIG_RD_LVC_DATA_VLD &&
ALIG_RD_LVC_H4_ K4 &&
(ALIG_RD_LVC_MFI[4:0]
>=16) &&
(ALIG_RD_LVC_MFI[4:0]
<=19)
Channel Fail CH_NL_VCAT_PREV_SQ_RPT_CNT =0
ALIG_RD_LVC_CH_FAIL CH_NL_VCAT_PREV_SQ_MATCH =0
Write CH_NL_ VCAT_PREV_SQ_RPT_CNT and
CH_NL_VCAT_PREV_SQ_MATCH
Channel Reset CH_NL_VCAT_PREV_SQ_RPT_CNT =0
ALIG_RD_LVC_CH_RST CH_NL_VCAT_PREV_SQ_MATCH =0
CH_NL_VCAT_SQM = 1
CH_NL_VCAT_ACC_SQ=0
Write CH_NL_ VCAT_PREV_SQ_RPT_CNT,
CH_NL_VCAT_PREV_SQ_MATCH, CH_NL_VCAT_SQM and
CH_NL_VCAT_ACC_SQ
Sink Port Reset —
ALIG_RD_LVC_SK_RST &&
~ALIG_RD_LVC_CH_RST
30
8.8.2 Passing Control and Data to DSQ -continued
For non-LCAS channels, the LVC uses the configured
expected sequence numbers when passing data bytes to the LVC_DSQ_SK_LPID = ALIG_RD_IVC_ SK LPID
DSQ. The expected sequence number of such a channel is inggggfg}? sz[;LI\C/iTiRDAﬁLgCi;VIEVC CH STS VT
kept in the CFG block and piped to the LVC in each clock 35 LVC:DSQ:CH:STS:VC4_= ALIG. RD. LVC. CH_STS. VC4
cycle associated with that channel. LVC_DSQ_CH_STS_VTG_TYPE =
To keep the data passing design as similar as possible ALIG_RD_LVC_CH_STS_VTG_TYPE
between LCAS and non-LCAS VCGs, the LVC behaves the
same way with respect to passing control and data to the 8.9 Sink Configured as LCAS Interworking with Non-
DSQ except for the following differences: 40 LCAS Source
Expected sequence number received from ALIG_RD is When an LCAS channel detects that both the CRC and the
passed to the DSQ as the sequence number for all control word is zero, it sets the RX_CH_LCAS_NL_SRC
pay!oad bytes ) status bit. This is likely to happen due to network manage-
DNU is set iny for non-payload timeslots and never for ment configuration error where a non-LCAS source is
payload timeslots ) 45 associated with an LCAS sink. in this case, software should
All .channels are treated as .accepFed. members (i.e. the see this status bit set on all channels of the VCG. Note that
ahg_rd_lyc_ch_accepted signal is 1gn0re.d) this does not change any other LCAS operation.
The following pseudo-code formally specifies how the Software can then reset the channels and the sink port to
LVC passes control and payload data to the DSQ; reconfigure them as a non-LCAS VCG. Normally, for each
50 member of a non-LCAS VCG, the expected sequence num-
ber needs to be configured by the NMS. However, in this
If (~ALIG_RD_LVC_CIL_RST) { case, it may be desirable for software to use the received
If (~ALIG_RD_LVC_DATA_VLD || ALIG_RD_LVC_H4_K4) { > Y
- sequence numbers. In order to do, software first may enable
LVC_DSQ_DNU =1 q b I der to d ft first y bl
the VCG with dummy expected sequence numbers assigned
Else { 55 to the member channels. Software will then determine the
! LVC_DSQ_DNU =0 actual sequence numbers that the software is using through
1VC_DSQ_CH_SQ = CH_NL_VCAT_EXP_SQ the accepted sequence number status parameters. During
LVC_DSQ_CH_ACCEPTED = 1 this time, the accepted bits of the channels can be armed off
(or the associated IFR port may be disabled). Finally,
Else { .
60 software will reconfigure the expected sequence numbers of

LVC_DSQ_CH_SQ = 0 // Dummy since channel in reset
LVC_DSQ_DNU = 1 // Dummy since channel in reset
LVC_DSQ_CH__ACCEPTED = 0 // Dummy since channel in reset

}

LVC_DSQ_CH_FAIL = ALIG_RD_ILVC_CH_FAIL
LVC_DSQ_CH_RST = ALIG_RD_IVC_CH_RST
LVC_DSQ_SK_RST = ALIG_RD_IVC_SK_RST
LVC_DSQ_CH_DATA = ALIG_RD_ILVC_CH_DATA

65

the channels based on the accepted status variables in the
previous step.
9 De-sequencer (DSQ)

On its input data path, the DSQ module interlaces to the
LVC. The payload data bytes coming out of the DSQ after
reordering is multiplexed with payload data from non-VC
channels before passing them to IFR.



US 9,461,942 B2

81

The function of the DSQ is to reorder payload bytes
arriving from the network for a VCG according to the
receive slot order of its member channels to match the VC
sequence order of those channels. In the case of LCAS
VCGs, the VC sequence numbers to use for reordering are
extracted from H4/K4 overhead bytes. In the case of non-
LCAS VCGS, the configured expected sequence numbers
are used. Note that the DSQ module itself does not know if
a VCG is in LCAS or non-LCAS mode.

The data (both payload and H4/K4) bytes received on
channels that are members of a VCG are pushed to the DSQ
using the fixed 1344x1 calendar in the common configura-
tion and calendar generator block. The same calendar is also
used to pull reordered data from it.

In every timeslot assigned to a given channel that is a
member of a VCG, a pull request is always made whether or
not a byte is pushed. When a payload byte is pushed to DSQ,
the DSQ may not have a byte available to pass to the packet
side. The converse is also true.

FIG. 7 shows the interfaces of the DSQ module and the
memories contained in it. The desequencer 702 interfaces
with the LVC 704, the ANA multiplexer 706 (Which outputs
to the input frame (IFR) 708), and the CFG 710. The DSQ
includes a reorder data buffer memory, a reorder state
memory and a reorder buffer selection configuration
memory.

9.1 Interface To LVC

The DSQ receives the following calendar, configuration
and control information from LVC in each clock cycle along
with a payload byte, if any.

9.1.1 Calendar and Configuration Information

RX_CH_STS_VT

RX_CH_STS _VTG_TYPE

RX_CH_VC4

RX_WID

RX_CH_SK_LPID

9.1.2 Control Information

Payload data valid

Channel fail condition

Channel reset condition

DNU

5Q

9.2 Interface To ANA

The DSQ provides the following configuration and con-
trol information to the ANA in each clock cycle along with
a payload byte, if any:

RX_CH_LPID

RX_CH_DATA_VLD

9.3 Interface To CFR

The DSQ generates interrupt status set requests to the
CFR for the following events:

RX_SK_RBID_CHG_DONE

There are no status variables kept in the DSQ.

9.4 Interface To CFG

The DSQ maintains the following configuration param-
eters for each VCG:

RX_SK_RBID_0

RX_SK_RBID_1

The CFG module directs read and write requests for these
parameters to the DSQ module.

The DSQ does not have any status parameters.

The DSQ passes sink port reset signal it receives from
LVC to the CFG whenever it generates an interrupt to it.
Note that the DSQ does not use the sink port reset signal for
its own operation.

10

15

20

25

30

35

40

45

50

55

60

65

82

9.4.1 Interrupt Events

The DSQ generates the following interrupt events to the
CFG:

RX_CH_VCAT SK RBID_CHG_DONE

9.5 Configuration

The following configuration parameters are implemented
using 128x20 flops. RX_VCAT_SK_RBID_SEL parameter.

Configuration Parameter Size Value after initialization
RX_VCAT_SK_RBID_0 10 Undefined
RX_VCAT_SK_RBID_1 10 Undefined

Note that before any channels that map to a VC enabled
sink port are brought out of reset, the reorder buffer con-
figuration parameters for that port shall be configured prop-
erly.

Note that the DSQ module implements active/shadow
access scheme for these parameter to stay compatible with
the VCT_TX architecture. While there is no pending change
involved, the RX_VCAT_SK_RBID_SEL parameter iden-
tities the active copy. Software should be able to read only
the active copy. Software can read from or write to the
shadow copy. Software requests active and shadow copies to
be switched by toggling the RX_VCAT_SK_RBID_SEL
parameter. When the change is done, the DSQ module will
generate a change done interrupt.

9.6 State

The following sink port level state parameters are imple-
mented using 128x11 flops.

State Variable Size Value after initialization

WR_BUF_SEL
BUFO_VLD
BUF1_VLD
NEXT_RD_POS
RBID_RD_ COPY
RBID_WR__COPY

Oy e e
cocooocoo

9.7 Reorder Buffer Data Memory

The structure of the reorder buffer memory is the same as
the reorder buffer memory in the VCT_TX block except that
the data width is 9 bits. One bit is used as DNU bit.

9.8 Payload De-Sequencing Algorithm

The algorithm used by DSQ is similar to the payload-
sequencing algorithm used in the VCT_TX block in marry
aspects, including the reorder buffer and the buffer flipping
based on calendar rotations. However, there are some impor-
tant differences as well. The payload de-sequencing algo-
rithm uses the channel sequence numbers when writing to
the reorder buffer and keeps track of next read position for
each VCG. Additionally, the DSQ needs to deal with stalls,
channel failures and DNU conditions.

The ALIG_RD may stall not only because data is read
faster than it arrives but also data flow from existing
members of an LCAS VCG may have to be stalled when
adding a new member that has a longer delay than existing
members. However, The ALIG_RD design guarantees that a
VCG will not stall in the middle. In other words, during a
calendar rotation of the corresponding type (and in absence
of member channel failures), all members of the VCG will
pass data to the LVC/DSQ or none of them will pass data.
This alleviates the need to keep track of number of bytes
written in each VCG and allows calendar rotations to be
used for buffer flipping.



US 9,461,942 B2

83

Failures on accepted channels need to be handled by the
DSQ. In such a case, the DSQ will invalidate the current
write buffer. The LVC masks failures on unaccepted chan-
nels but sets the DNU bit.

As discussed in section 8.7.3, the LVC passes data to the
DSQ in every clock whether there is available data, whether
it is payload or H4/K4 or whether a channel is in fail/reset
condition or not. However, the LVC sets the DNU bit in all
cases but the one where them is a valid payload byte from
an accepted channel. whose current control word is not set
to DNU. This way, the DSQ does need to care if a byte that
is written to it is really a valid payload byte or not.

The DSQ does not process data or update its state in clock
cycles for channels that are either its reset or unaccepted.
Note that non-VCAT channels will typically have their
accepted configuration bit set to zero.

9.9 Reorder Buffer

Each VCG is assigned a reorder buffer from one of four
pools based on the current size of the VCG. Logically, a
reorder buffer contains two buffers, both of which have one
byte of space for each possible member of the VCG. While
payload bytes ate written to one buffer, payload bytes, if any
available, are read from the other buffer. The buffers of a
given VCG are swapped at calendar rotation point corre-
sponding to the type of that VCG.

The same reorder data buffer core used on the VCT_TX
block can be used in DSQ with the exception that the data
width is 9 bits to accommodate the DNU bit. This core
presents four single port memories as a logical dual port
memory that can be addressed using a reorder buffer id and
a relative position within the specified reorder buffer.

When the size of a VCG needs to grow beyond the
capacity of the current reorder buffer assigned to it, the VCG
needs to be assigned to a bigger reorder buffer. As discussed
in the VCT_TX architecture, the pool capacities are dimen-
sioned such that any combination of VCGs can be accom-
modated.

The payload de-sequencing algorithm handles reorder
buffer changes as in the payload-sequencing algorithm used
in the VCT_TX block. First, the write process switches to
the new reorder buffer at the beginning of the next calendar
rotation for that VCG, followed by the read process in the
next round.

The DSQ block synchronizes the reorder buffer changes
by itself. Software configures the reorder buffer ids and
which one of them the DSQ shall use for a given VCG. In
any member channel timeslot of a VCG, when DSQ sees that
the current one it is using is different than the new value
configured by software, it starts the change at the beginning
of the next round. At the end of that round, the switch will
be done and the DSQ will provide a reorder buffer done
change signal to the CFR block.

9.10 Buffer Flipping Based on Calendar Rotations

Since the calendar generator state encoded in RX_WID
signal is provided to the DSQ explicitly, the DSQ flips
buffers of VCGs of a given type when it sees the wheel
position for the corresponding type become zero.

5

10

20

25

30

35

40

45

50

55

84

The following table shows the global butter flipping
conditions for different VCG types.

VCG Type Global Buffer Select Flipped When

vC-4 When RX_ WID[13:10] is zero (VC-4 wheel position
is zero)

VC-3 When RX_ WID[13:8] is zero (VC-4 and VC-3 wheel
position are zero)

TU-3 When RX_ WID[13:8] is zero (VC-4 and VC-3 wheel
position are zero)

VC-12 When RX_ WID[13:2] is zero (VC-4, VC-3, VC-2 and
VC-11 wheel positions are zero

VC-11 When RX_ WID[13:4] and RX_ WID[1:0] are zero

(VC-4, VC-3, VC-2 and VC-12 wheel positions are zero

For each VCG type, the DSQ maintains a global
WR_BUF_SEL state variable. These variables are flipped
according to the above conditions.

In addition, each VCG maintains its own SR_BUF_SEL
state variable. When the first member channel of'a VCG that
sees the WR_BUF_SEL variable of that VCG different than
the corresponding global state variable, the VCG state
variable is toggled. This ensures that the VCG state variable
is toggled only once during a corresponding calendar rota-
tion.

9.11 TID for ANA

The DSQ module generates the dsq_ana_tid signal it
provides to the ANA based on the calendar and channel type
information it receives from the LVC module as follows:

If (lve_dsq_sts_ VC4) {
Ive_dsq_tid = alig. rd_ Ive_ wid[12:9] * 84

Else If (~lve_dsq_sts_vt) {
dsq_ana_tid = Ive__dsq_ wid[12:9] * 84 + lvc_ dsq_ wid[&:7] * 28

)
Else If (Ive_dsq_sts_vtg_type) { / VC-11
dsq_ana_ tid = Ive__dsq_ wid[12:9] * 84 + lve_dsq_ wid[8:7] * 28 +
lve_dsq_wid[6:4] * 4 + lve__dsq_ wid[1:0]

j
Else { // VC-12
dsq_ana_ tid = Ive__dsq_ wid[12:9] * 84 + lve_dsq_ wid[8:7] * 28 +
lve_dsq_wid[6:4] * 4 + lve__dsq_ wid[3:2]

The “vet_rx_uarch” document has an optimized imple-
mentation of these equations.

The TID generation is done in every clock cycle whether
or not the channel associated with that timeslot is associated
with a VCAT sink port and whether or not the channel is in
fail/reset condition.

Note that whether a channel is in reset condition or not
doesn’t affect the channel structure. The channel structure
information is kept in separate STS level registers.

9.12 Pseudo-Code

// Global Write Buffer Select Update Check
If (~lve_dsq_ch_sts_ vt) {
If (lve_dsq_ch_VC4) {
If (lve_dsq__wid[13:10] == 0) {
RX_VCAT_VC4_WR_BUF_SEL = ~RX__ VCAT_VC4_WR_BUF_SEL

}

}
Else {

If (lve_dsq__wid[13:10] == 0) {



US 9,461,942 B2
85

-continued

RX_VCAT_VC3_WR_BUF_SEL = ~RX_VCAT_VC3_WR_BUF_SEL

¥
)
Else {
If (lve_dsq__ch. Vtgftype ==0){//VT12
If (lve_dsq_ wid[13:2] == 0) {
RX_VCAT_VC1 27WR7BUF7$EL =~RX_VCAT_VC12_WR_BUF_SEL

}

Else {
If ((Ive__dsq_wid[13:4] == 0) && (lve__dsq_wid[1:0] == 0)) {
RX_VCAT_VC(C1 17WR7BUF7$EL = ~RX7VCAT7VC 11_WR_BUF_SEL
¥
¥

// For channels in reset or that are not accepted don’t
// process data and update state
If (~lve_dsq_ch_ rst && lve_ch_accepted) {
// Read the configuration memory entry for this VCG
{Rbid0, Rbid1, Rbid__Sel} = DSQ_CFG_MEM]lve_dsq_ch_sk_Ipid]
// Read the state memory entry for this VCG
{Wr_Buf_Sel,
Bufo__Vld,
Bufl__Vld,
Next__Rd__Pos
Rbid_Wr_ Copy,
Rbid__Rd__Copy} = DSQ_STATE_MEM][lvc_dsq_ch_sk_Ipid]
// Determine if we are flipping the VCG of this channel or not
Flip =0
If (~lve_dsq_ch_sts_vt) {
If (lve_dsq_ch_VC4) {
If (lve_dsq__wid[13:10] == 0) {
Flip = (RX?VCAT?VC47WR7BUF7$EL != Wr_Buf_Sel)

Else {
If (lve_dsq_ wid[13:10] == 0) {
Flip = (RX?VCAT?VC37WR7BUF7$EL !=Wr_ Buf Sel)

¥
)
Else {
If (lve_dsq__ch. Vtgftype =0) { // VT12
If (lve_dsq_wid[13:2] == 0) {
Flip = (RX?VCAT?VCIZ?WR?BUF?SEL !=Wr_Buf_Sel)

Else {
If ((Ive__dsq_ wid[13:4] == 0) && (lve_dsq_ wid[1:0] == 0)) {
Flip = (RX?VCAT?VCH?WR?BUF?SEL 1= erBuffSel)

}

}
If (Flip) {
// Flip the buffers
Wr_Buf Sel = ~Wr_Buf_ Sel
// Initially buffer is valid
Wr_Buf_VId =1
// Next read position starts at zero at the beginning of a
// calendar rotation
Next_Rd_Pos =0
// Update reorder buffer copy used by write and read side
// if a change requested and generate interrupt when change
//'is done
If (Rbid__Sel != Rbid_Wr__Copy) {
Rbid_Wr__ Copy = Rbid__Sel

Else If (Rbid__Sel != Rbid_Rd__copy) {
Rbid__Rd_ Copy = Rbid__Sel
Generate RX__SK_ RBID__CHG_ DONE interrupt for
Ive_dsq_ch_sk_Ipid
¥
¥

// Determine the read and write buffer ids to use in this cycle
If (Rbid_Wr__Copy) {
Wr_Rbid= Rbidl

Else {

86



US 9,461,942 B2
87 88

-continued

Wr_Rbid = Rbid0

}
If (Rbid_Rd_ Copy) {
Rd__Rbid= Rbid1

Else {
Rd__Rbid = Rbid0

// A fail condition on an accepted channel causes current
// write buffer to be invalidated
If (lve_dsq__ch_fail) {

Wr_Buf Vid=0

// Do the write
If (lve_dsq_ch sq <= GET_RB_ CAPACITY (Wr_Rbid)) {
WRITE_TO_RB (Wr__Rbid,
Wr__Buf_Sel,
Ive_dsq_ch_sq,
Ive_dsq_ch_dnu,
Ive__dsq_ch_ data)

}
// Do the read
{Rd_Data, Rd_DNU} = READ_ FROM_RB (Rd_Rbid,
~Wr__Buf_ Sel,
Next_Rd_ Pos)
Next_Rd__Pos++
// Generate the data and data valid signals to ANA
If (Rd_Buf_Vld && ~Rd_DNU) {
// Got valid payload data to send out
dsq_ana data vld=1
dsq__ana_ data = Rd_ Data

Else {
dsq_ana data vld=0

// Update the VCG state
If (Wr__Buf_Sel) {
Bufl_VId = Wr_ Buf VId
)
Else {
Bufo_VId = Wr_ Buf VId
}
DSQ_STATE_MEM[lve_dsq_ch_sk_Ipid] = {Wr_Buf_Sel,
Bufo_Vld,
Bufl_VId,
Next_Rd_ Pos
Rbid_Wr_ Copy,
Rbid__Rd_ Copy}

Else { // Channel in reset or not accepted
dsq_ana data vld=0
dsq_ana_ data = 0 // dummy

// LPID is passed through for non-VCAT channels

dsq_ana_ Ipid = Ive_dsq_ch_sk_ Ipid

/I Generate the TID for ANA for non-VCAT channels

If (lve__dsq_sts_vt) {

If (lve_dsq__sts_vtg_type) { // VC-11
dsq__ana_ tid = Ive__dsq_ wid[12:9] * 84 +

Ive__dsq_wid[8:7] * 28 +
Ive__dsq_wid[6:4] * 4 +
Ive__dsq_wid[1:0]

Else { // VC-12
dsq__ana_ tid = Ive__dsq_ wid[12:9] * 84 +
Ive__dsq_wid[8:7] * 28 +
Ive__dsq_wid[6:4] * 4 +
Ive__dsq_wid[3:2]
¥

)
Else If (Ive_dsq_sts_ved) {
Ive__dsq_tid = alig_ rd_ lve_ wid[12:9] * 84

Else {
dsq_ana_ tid = Ive__dsq_ wid[12:9] * 84 + lvc_ dsq_ wid[8:7] * 28

}




US 9,461,942 B2

89

1 Overview

1.1 Fractional Decomposition Model

FIG. 8 shows the high level components of the virtual
concatenation transmit (VCT_TX) block. The VCT_TX 800
interfaces with a cpu 802, and includes a configuration
module 804 for communicating with the CPU. The configu-
ration module also communicates with payload sequencer
806 (this interfaces with output OFR 808), and also com-
municates with path overhead generator 810. The configu-
ration module and path overhead generator both receive
input from the Global multiframe indicator (MFI) and group
identification (GID) generator module 812. The payload
sequencer and path overhead generator are multiplexed,
both the SPE bytes and control data, and the output is sent
to the cross connect (CXC). The data path of the VCT_TX
block is completely driven by the requests from the CXC,
which generates the frame calendar (including the VT super
frame cycle).

When CXC makes a valid request in a givers clock cycle,
it specifies the channel id as well as Game position infor-
mation such as the row and column numbers. Based on this
information, the TX_VCAT block determines if a request
from the CXC is for a payload byte or for an overhead byte
and in the latter case which specific overhead byte should be
generated. The payload requests are passed to the payload
sequencer block and the overhead byte requests are passed
to the path overhead generator block. The data outputs from
these blocks are synchronized and multiplexed to the data
input of the CXC.

In order to support VCAT function, payload bytes pulled
from OFR are passed through a payload sequencer. Since the
sequence numbers assigned to member channels of a VCG
can represent a different order than the transmission slot
order of the channels, the payload data bytes pulled from
OFR need to be buffered before being sent to the CXC. The
specific payload-sequencing algorithm chosen is described
in herein.

Path overhead generator provides a response for all path
overhead bytes. However, except for the H4/Z7 bytes, zeros
are generated. Path overhead generator uses global MFI and
GID counters and per channel internal state to generate the
H4/77 overhead bytes.

To support LCAS, two copies of configuration memories
that store VCAT forward control information and LCAS
reverse control information are maintained. When software
makes a request to change the configuration of a particular
LCAS VCG to modify its membership or update LCAS
reverse control information, global MFI counters are used to
synchronize the configuration changes to frame boundaries
corresponding to beginning of LCAS control packets.

This example does not show the data path for channels
that are carrying packet data but are not virtually concat-
enated. However, the date flow process for such channels is
described in the behavioral specification herein.

2 Payload Sequencing and De-sequencing Algorithms

According to one embodiment of the invention, a system
and method for performing a payload-sequencing algorithm
is to reorder bytes pulled from the packet side according to
the transmission slot order of member channels of a VCG,
to match the programmed sequence order of those channels.
It is also configured to handle dynamic VCG membership
changes.

The payload-sequencing algorithm used by the VCT_TX
block can be described at different levels. At one level, the
basic reordering algorithm for a single VCG is described,
which is the core of the overall payload-sequencing algo-

5

10

15

20

25

30

35

40

45

50

55

60

65

90

rithm. The reordering algorithm uses double buffering to
handle VCG membership changes to support LCAS.

It should be pointed out that the basic reordering algo-
rithm could be reused in the design of de-sequencer module
of the VCT_RX block. In fact, it would possible to use the
same reordering core logic in these two blocks.

Next, we describe how the algorithm works for multiple
VCGs in the context of the VCT_TX block. The key
observation here is that VCGs of different type (i.e. type of
the member channels) have different calendar rotation peri-
ods. For example, ignoring invalid clock cycles, an STS-1
type VCG will have a rotation calendar of 48 clocks whereas
a VTI-1.5/TU-11 type VCG will have a rotation calendar of
1344 clocks. The notion of calendar rotation period of a
VCG is important within the VCT_TX block, because the
payload-sequencing algorithm uses calendar rotations to
control when reordering buffers of VCG are swapped
between the read and write processes.

Finally, we introduce the concept of VCG buffer pair
pools based on the maximum VCG size that a given buffer
pair supports. This is an optimization technique for reducing
the amount of buffer memory. It requires an extension to the
reordering algorithm for switching between buffer pairs
from different pools due to VCG membership changes.

2.1 Reordering Algorithm for Virtual Concatenated
Groups (VCG)

FIG. 9 shows how the reordering algorithm uses a pair of
buffers for each VCG. The byte capacity of each of the
buffers is equal to or greater than the number of members of
the VCG. The read and write processes alternate between
these two buffers. While the write process is writing to one
buffer, the read process is reading from the other buffer. Note
that both processes are driven by the CXC requests.

The write process maintains a NEXT_WR_POS state
variable for each VCG. Initially, this variable is set to zero.
When CXC requests a payload byte for a givers channel, the
write process polls a byte from OFR using the TX_PI,_LPID
configuration parameter of that channel and stores it in the
current write buffer of that VCG at the location indexed
using the NEXT_WR_POS state variable.

The NEXT_WR_POS state variable of a VCG is incre-
mented by one every time a byte is written to the current
write buffer of the VCG. After the number of bytes written
to a VCG becomes equal to the size of that VCG, this
variable is set to zero again and the next write to this VCG
will happen after the buffers are swapped.

When CXC requests a payload byte for a given channel,
the read process loads a byte from the current read buffer of
a VCG at the location corresponding to the configured
VCAT sequence number of that channel. So unlike writes,
successive reads may not access consecutive locations in the
current read buffer.

The reordering algorithm does not know the size of the
VCG and therefore cannot determine by itself when to swap
the VCG buffers between the read and write process. It
assumes that this is tracked separately and the buffers will be
swapped and NEXT_WR_POS variable be reset under the
control of an external agent. In the case of the VCT_TX
block, since all members of a VCG of a given type would
have written one byte in one calendar rotation for that type,
buffers can be swapped and the NEXT_WR_POS state
variables of all VCGs of that type can be reset at either the
beginning or end of the calendar rotation for that type.

Note that the reordering algorithm assumes that by the
time the writes are finished, the reads from the previous
round have also finished. This is clearly true for the
VCT_TX block since both reads and writes are driven from



US 9,461,942 B2

91
the same calendar. Note that this assumption also holds for
the VCT_RX block since IFR can accept a new request
every clock without stalling. The VCT_RX block needs to

92
TABLE A

Initial Members Example

deal with stalling of writes but this would be handled outside Round
the reordering algorithm. 5
2.1.1 Dynamic Membership Changes -1 0 1
In order to handle dynamic VCG membership changes, Slot o 1 2 o 1 2 o 1 2
the read process runs one rotation calendar behind the write NEXT_WR_POS ~ — O 1 — 0 1 — 0 1
- f th fiourati lues it C Input — DO DI — D2D3 — D4 D5
process in terms of the configuration values it uses. Con- |, % year_sq —_ 1 0 — 19 — 1 %
figuration changes can only take affect at frame boundaries WrBuf A A A B B B A A A
corresponding to beginning of LCAS control packets. So for ;\;rgd;h N g ]13 N 2 i N g ]13
: . . u
a VCG of a given type, in the first rotation calendar of that RdAddr . _ 1 0 — 1 90
type that coincides within a frame that coincides with the BA-0 — DO DO DO DO — D4 D4
beginning of an LCAS control packet for that type, the write 15 gié - ]E ]E - ]f
process may use new configuration (in terms of which BB-0 — — — D2D2 D2 D2 —
channels are members of this VCG and are requesting data; ggé - = = — — D D — —
i.e. channels whose control Worq is NORM/EQS) Where.:as Output 0 0 — DL DI — D3 D2
the read process uses the previous configuration (which
TABLE B
Member Addition Example
Round
12382 12383 12384 12385
Slot 0 1 2 0 1 2 0 1 2 0 1 2
NEXT_WR_POS — 0 1 0 1 2 0 1 2 0 1 2
Input —  D24766 D24767 D24768 D24769 D24770 D24771 D24772 D24773 D24774 D24775 D24776
TX_VCAT_SQ — 1 0 2 1 0 2 1 0 2 1 0
WiBuf B B B A A A B B B A A A
WrAddr — 0 1 0 1 2 0 1 2 0 1 2
RdBuf A A A B B B A A A B B B
RdAddr — 1 0 — 1 0 2 1 0 2 1 0
BA-0 D24764 D24764 —  D24768 D24768 D24768 D24768 D24768 —  D24774 D24774 D24774
BA-1 D24765 — — — —  D24769 D24769 D24769  — — —  D24775 D24775
BA-2 — — — — — D470 — — — — —  D24776
BB-0 —  D24766 D24766 D24766 D24766 —  D24771 D24771 D24771 D24771 D24771  —
BB-1 — —  D24767 D24767 — — —  D24772 D24772 D24772 — —
BB-2 — — — — — — — —  D24773  — — —
Output —  D24765 D24764 —  D24767 D24766 D24770 D24769 D24768 D24773 D24772 D24771

channels are members of this VCG and requesting data, and
their sequence numbers). In the next calendar rotation, the
read process will also use the new configuration.

The first example illustrated is Table A shows the algo-
rithm operation starting from round 0 assumed to correspond
to the beginning of a high order multi-frame (i.e. the first

45

During initialization of a VCG, before a member channel payload byte of STS-1 0). Note that the VCG configuration
is brought out of reset, we assume that the software will set is modified to have two active members from having no
both copies of control word for that channel to IDLE. active members in the previous round (i.e. the last payload
Therefore, neither the read nor write process would access byte of STS-1 2), which is numbered as -1.
the reordering buffers during initialization. Afterwards, >°
when the control word configuration of some .or all the The next example provided in Table B shows the algo-
member channels are set to NORM/EOS, the write process . . . .

. . .. rithm operation when a new member is added to the VCG in
will see configuration change first and start writing one . .
round before the read processes see the configuration change 55 the next multi-frame, which starts at calendar round 12,384.
and starts reading. Again, note that the configuration is changed at the end of

The examples provided in the next section illustrate the ﬂ.le multi-frame boundary (i.e. calen.dar rotatl.on 12,383)
operation of the algorithm under dynamic configuration since read process lags one round behind the write process.
changes. For simplicity, we will consider a single high-order o Weassume that the size of the VCG buffer is at least 3-bytes
VCG within an STS-3 frame in the examples. to accommodate the new member addition.

2.1.2 Reordering Algorithm Operation Examples

In the examples provided in this section, we consider a The last example provided in Table C shows the algo-
single VCG that initially has two members. The examples rithm, operation when the member with sequence number O
show, in each time slot, the data bytes pulled from OFR and 65 » OP d

written to the buffer, the data bytes read from the buffer and
passed to the CXC, and the contents of the buffers.

is removed from the VCG at the next multi-frame, which
starts at calendar round 24,768.



US 9,461,942 B2

93 94
TABLE C
Member Removal Example
Round
24766 24767 24768 24769

Slot 0 1 2 0 1 2 0 1 2 0 1 2
NEXT_WR_POS 0 1 2 0 1 — 0 1 — 0 1 —
Input D61920 D61921 D61922 D61923 D61924 — D61925 D61926 — D61927 D61928 —
TX_VCAT_SQ 2 1 0 1 0 — 1 0 — 1 0 —
WrBuf B B B A A A B B B A A A
WrAddr 0 1 2 0 1 — 0 1 — 0 1 —
RdBuf A A A B B B A A A B B B
RdAddr 2 1 0 2 1 0 1 0 1 0 —
BA-O D61917 D61917 — D61923 D61923 D61923 D61923 — — D61927 D61927 D61927
BA-1 D61918 — — — D61924 D61924 — — — — D61928 D62928
BA-2 — — — — — — — — — — — —
BB-0 D61920 D61920 D61920 D61920 D61920 — D61925 D61925 D61925 D61925 — —
BB-1 — D61921 D61921 D61921 — — — D61926 D61926 — — —
BB-2 — — D61922 — — — — — — — — —
Output D61919 D61918 D61917 D61922 D61921 D61920 D61924 D61923 — D61926 D61925 —

2.1.3 Handling LCAS Temporary Member Removal

The LCAS protocol uses the DNU control word to
indicate that a member is temporarily removed. When a
channel is in DNU state, it does not carry payload data. On

starts the first LCAS control packet that indicates DNU for
this member. For the 16 frames less one calendar, i.e. till
round 24767, the payload configuration does not change. At
that calendar rotation the payload configuration changes.

TABLE D

Temporary Member Removal Example

Round
24766 24767 24768 24769
Slot 0 1 2 0 1 2 0 1 2 0 1 2
NEXT_WR_POS 0 1 2 0 1 — 0 1 — 0 1 —
Input D61920 D61921 D61922 D61923 D61924 — D61925 D61926 — D61927 D61928 —
TX_VCAT_PL_SQ 2 1 0 1 — 0 1 — 0 1 — 0
TX_LCAS_OH_SQ 2 1 0 2 1 0 2 1 0 2 1 0
TX_VCAT_CTRL EOS DNU NORM EOS DNU NORM EOS DNU NORM EOS DNU NORM
WrBuf B B B A A A B B B A A A
WrAddr 0 1 2 0 — 1 0 — 1 0 — 1
RdBuf A A A B B B A A A B B B
RdAddr 2 1 0 2 1 0 1 — 0 1 — 0
BA-0 D61917 D61917 — D61923 D61923 D61923 D61923 D61923 — D61927 D61927 D61927
BA-1 D61918 — — — — D61924 — — — — — D62928
BA-2 — — — — — — — — — — — —
BB-0 D61920 D61920 D61920 D61920 D61920 — D61925 D61925 D61925 D61925 D61925 —
BB-1 — D61921 D61921 D61921 — — — — D61926 — — —
BB-2 — — D61922 — — — — — — — — —
Output D61919 D61918 D61917 D61922 D61921 D61920 D61924 — D61923 D61926 — D61925

the write side, hardware should therefore not poll payload <

data from OFR in the timeslots for that channel. On the read
side, it should send zeros.

However, the sequence numbers conveyed in the LCAS
control packets do not change when one or more members
are in the DNU state. If we used the sequence numbers that
should be sent in LCAS control packets to control the read
process, the reordering algorithm would not work correctly
when one or more members of a VCG are in DNU state.

Therefore, hardware uses separate sequence numbers for 60

payload and overhead to handle temporary member
removal.

Table D shows how the algorithm operates when the
member with sequence 1 goes to DNU instead of being
deleted permanently. Assume that round 12384 corresponds
to the first calendar rotation in the frame whose H4 byte

55

65

Note that the sequence numbers used for payload reor-
dering, called TX_VCAT_PL_SQ, are configured as if the
member was removed where as the sequence numbers used
in the overhead, called TX_ILCAS_OH_SQ, did not change.

2.2 Payload Sequencing Algorithm Considering Multiple
VCGs

FIG. 10 shows how the payload-sequencing algorithm
works with four VCGs of different types, Buffer A and B
represent the two copies data buffer memories used to
support the double buffering scheme of the reordering
algorithm. It is assumed that calendar generation for all
channel types started at clock 0.

The calendar rotation periods of these VCGs in terms of
number of (valid) clock cycles is show in the following
table.



US 9,461,942 B2

VCG Number Type Calendar Rotation Period Pool Type Pool Capacity
1 STS-3¢ 16 64-byte 40
2 STS-1 48 32-byte 39
3 VT2 1008 5 16-byte 70
4 VT-1.5 1344 8-byte 19

Due to differences between calendar rotation periods of
different channel types, for each VCG type we need to keep
track of which copy of the reorder buffer memories should
be used for writing and which copy for reading. When the
calendar rotates for a given channel type, all VCGs of that
type switch write/read view of their reorder buffer memo-
ries. FIG. 10 illustrates a payload sequencing algorithm with
VCGs of different type.

Note that it is possible to use single port memories for the
data buffers by aligning the read and write process pipelines
such that only one VCG is reading and writing from the
buffer memories in a given clock.

2.3 Reorder Buffer Pools

Reorder buffers are grouped into the following pools
based on their capacities:

64-byte pool

32-byte pool

16-byte pool

8-byte pool

A VCG is assigned by software to a reorder buffer from
a specific pool based on the size of that VCG, for example,
if the VCG is to have 10 member channels initially, it can be
assigned to a reorder buffer from the 16-byte pool. If the size
of this VCG needed to grow beyond 16 members later on,
then the VCG would need to be mapped to a bigger buffer
from. By the same token, if the size of the VCG gets reduced
below 8 in the future, the VCG may be switched to an 8-byte
buffer pair in order to make the 16-byte buffer pair available
to another VCG that may need it. The switching mechanism
between buffer pairs is discussed in the following section.

Given the total number of channels that may need to be
virtually concatenated, we can determine the number of
buffer pairs that each pool needs to have in order to have no
limitations on VCG combinations. For 1344 channels, the
way we do this is as follows:

1. The maximum number of 33 member VCGs is 40.
Since the only pool that can be used for these VCGs is
the 64-byte pool, the capacity of the 64-byte buffer pool
must be 40.

2. The maximum number of 17 member VCGs is 79. We
can use either the 64-byte or the 32-byte pool for them.
If we used all the buffer pairs in the 64-byte pool for
them, we would need 79-40=39 buffer pairs in the
32-byte pool.

3. The maximum number of 9 member VCGs is 149. We
can use the 64-byte, the 32-byte pool, or the 16-byte
pool for them. If we used all the buffer pairs in the
64-byte, 32-byte and 16-byte pools for them, we would
need 149-79-40=70 buffer pairs in the 16-byte pool.

4. The maximum number of 8 member VCGs is 168. We
can use the 64-byte, 32-byte, or 16-byte pool for them.
If we used all the buffer pairs in the 64-byte, 32-byte,
and 16-byte pools for them, we would need 168-70-
39-40=19 buffer pans in the 8-byte pool.

To summarize, the required capacity of each pool for
supporting 1344 channels is as follows:

15

20

25

45

55

60

65

The total number of buffer bytes required with buffer
pooling optimization is 10160 bytes. Without this optimi-
zation, i.e. assuming that each VCG can have 64 members,
the required bytes would be 32768 bytes. Ignoring memory-
structuring inefficiencies that would be involved in support-
ing buffer pools, this represents savings of about 69%.

Note that since the total number of reorder buffers (168)
is greater than the number of VCGs that need to be supported
(128), there is no concern for the case where all VCGs are
used and none of them have more than 8 members.

2.3.1 Switching Reorder Buffers

Switching from one type of reorder buffer to another
happens at calendar boundaries. Since the read and write
processes alternate between the two buffers of a reorder
buffer at frame boundaries anyway, switching from one type
of reorder buffer to another can be handled the same way as
dynamic membership changes are handled; i.e. by having
the read see configuration change one calendar after the
write process. For reorder buffer switching, what changes is
the VCG to reorder buffer mapping configuration.

FIG. 11 shows how reorder buffer switching would be
accomplished. The smaller buffer pair in calendar round N
is the current reorder buffer used by the VCG. In round N+1,
the write process uses the new buffer pair but the read
process reads from the old buffer pair. Starting from round
N+2, the VCG has switched to the new larger buffer pair for
both read and write processes and the old buffer pair can be
returned to the pool.

Software needs to specify what the next reorder buffer that
should be used by a VCG and provide an indication to the
hardware of the requested, change for the affected VCG.
Once the hardware sees the indication, it will first switch the
write process for that VCG to the new buffer at the next
calendar boundary. In the following calendar boundary, the
read process will switch to the new buffer as well.

FIG. 11 illustrates an example of switching between
buffer pairs. Note that the reorder buffer switch can happen
at any calendar boundary, so if can be decoupled from
membership configuration changes that happen at multi-
frame boundaries. For example, before adding new members
to a VCG, software can first switch the VCG to a new buffer
or greater capacity and then add the new members to the
VCG. When members are being removed, software may
switch the VCG to a smaller buffer pair after the remove
operation is completed.

On the other hand, there is no reason why reorder buffer
switching cannot be done in the VCT_TX block at the same
time as membership configuration changes are done. By
combining them, the same software configuration change
mechanism be used to make VCAT forward configuration
changes. We assume this is the case in the configuration
model described in section 3

2.3.2 Reorder Buffer Switching Example

Table E provides an example of how two reorder buffers
are used during the buffer switching. In this example, the
VCG is initialized in calendar-round 0 with a reorder buffer
1 that has two bytes of capacity. Starting in round 2, the
VCG switches to reorder buffer 2, which has three bytes of



US 9,461,942 B2

97

capacity. At the end of round 4, the switching operation is
complete and reorder buffer 1 is available for use by another
VCG.

TABLE E

98
the case of TX_CH_SO_LPID parameter, if a channel is
currently assigned to a VCG (i.e. SO_VCAT_EN is set),
then the TX_CH_VCAT_CTRL parameter of that channel

Switching To Larger Buffer Pair Example

Round
0 1 2 3
Slot o 1 2 o 1 2 0 1 2 0 1 2
NEXT_WR_POS — 0 1 — 0 1 — 0 1 — 0 1
Input — DODI — D2D3 — D4D5 — D6 D7
TX_VCAT_SQ — 1 0 — 1 0 — 1 0 — 1 o0
WrBuf Al Al Al Bl Bl Bl A2 A2 A2 B2 B2 B2
WrAddr — 0 1 — 0 1 — 0 1 — 0 1
RdBuf Bl Bl Bl Al Al Al Bl Bl Bl A2 A2 A2
RdAddr - - — — 1 0 — 1 0 — 1 o0
Al1-0 — DO D0 DO DO — — — — — — —
Al-1 — — DI DI — — — — — — — —
B1-0 - — — — D2D2 D2 D2 — — — —
Bl-1 - — — — — D3 D3 — — — — —
A2-0 - - — — — — — D4 D4 — D4 —
A2-1 - - - - — - — D5 — — —
A2-2 _ - = = — e
B2-0 — - - — — — — — D6 D6
B2-1 _ - = = = = = — — D7
B2-2 _ - = = = = = = = = =
Output — 0 0 — DI DO — D3 D2 — D5 D4
3 Configuration Model should first be changed to IDLE (and change completed)
Some configuration parameters are specified at the chan- 30 before changing the TX_CH_SO_LPID parameter of that

nel level whereas others are specified at the VCG level.
Channel level parameters are prefixed with TX_CH and
VCG level parameters are prefixed with TX_SO or TX_SK,
depending on if they refer to forward or reverse directions,
respectively.

Except for TX_CH_SO_LPID parameter, all configura-
tion parameters are applicable to channels that are members
of a VCG. Some of these parameters apply only to LCAS
VCGs, whereas other parameters apply to both non-LCAS
and LCAS VCGs. Parameters that apply only to LCAS
VCGs are distinguished by using LCAS in the parameter
name. Parameters that apply to both LCAS and non-LLCAS
VCGs are distinguished by using VCAT in the parameter
name.

The configuration parameters that control the payload
types of transmit logical ports, i.e. TX_SO_VCAT_EN and
TX_SO_LCAS_EN parameters, are static in the sense that
while there are any out-of-reset transmit channels that are
mapped to a given logical port, the value of these parameters
for that logical port should not be changed.

All other parameters are dynamic in the sense that they
can be changed without resetting the channels. However, in

35

40

45

50

channel.

Software can trigger configuration changes at one of the
four levels independently:

VCG level VCAT/LCAS forward configuration
VCG level LCAS reverse MST and RS/ACK configura-
tion
Channel level LCAS reverse insert sink port and insert
enable configuration
Channel level source port mapping configuration
The configuration parameters that change at the VCG
forward or reverse level require two copies to support
dynamic VCG configuration changes to support LCAS end
also to support orderly VCG bring up and shutdown in the
case of non-LCAS VCGs.

Note that even though some dynamic configuration
parameters (e.g. TX_VCAT_CTRL) are specified at the
channel level, they are changed at the VCG level. This
allows configuration changes involving multiple member
channels to take affect simultaneously.

The following table provides the list of configuration
parameters, their static/dynamic nature and at what level
they are changed.

Configuration Parameter Static or Dynamic Change level Copies
TX_CH_SO_LPID Dynamic1 Channel forward 1
TX_CH_VCAT_PL_SQ Dynamic VCG forward 2
TX_CH_LCAS_OH_SQ Dynamic VCG forward 2
TX_CH_VCAT_CTRL Dynamic VCG forward 2
TX_CH_LCAS_REV_INS_EN Dynamic Channel reverse 1
TX_CH_LCAS_REV_INS_SK_ LPID Dynamic Channel reverse 1
TX_SO_VCAT_EN Static N/A 1
TX_SO_LCAS_EN Static N/A 1
TX_SO_VCAT_RBID Dynamic VCG forward 2



US 9,461,942 B2

99

-continued

Configuration Parameter

Static or Dynamic Change level

TX_SK_LCAS_MST
TX_SK_LCAS_RS_ACK

Dynamic
Dynamic

VCG reverse
VCG reverse

Note 1:

Even though the TX_CH_SO_LPID parameter is dynamic, in order to ensure orderly VCG configuration
changes, if a channel is currently assigned to a VCG, then the TX_CH_VCAT_CTRL parameter of that
channel should first be changed to IDLE and forward change completed before changing its TX_CH_SO__

LPID parameter.

For configuration parameters that have two copies, the
same type of configuration change control mechanism is
used for either forward or reverse VCG level change.
Software specifies which copy of the configuration that
hardware shall use using a select bit. Hardware synchronizes
the changes to proper frame boundaries and can notify
software when the change is completed by an interrupt.

During the switch over from the previous configuration to
the new configuration, software should not change the
previous configuration of the VCG as hardware may be
using the previous configuration. The amount of switching
time depends on if the reverse of forward configuration is
being changed and whether or not VCG is LCAS enabled or
not.

3.1 Configuration Memories

Memories that store static configuration parameters and
dynamic configuration change control parameters must be
dual ported to support simultaneous hardware and software
access.

Memories that store dynamic configuration parameters
are also dual ported to reduce the amount of time that
software has to wait to make a new change (likely to another
VCG) while a previous change is in progress. This is
because during Use configuration switch process, both cop-
ies of configuration information need to be available for up
to 32 ms for a low order LCAS VCG.

Channel type configuration is not required in the
VCT_TX block since the CXC provides this information
with each request.

The parity bits used for error detection in configuration
memories are not shown.

Note that the global reset bit for the VCT_TX block is
kept outside the block.

3.1.1 Global Configuration

Parameter Size Initial value after global reset
FAST_LOCK_EN 1 0
TX_MFL_EN 1 0
TX_SHORT_FRAME_EN 1 0

The FAST _LOCK_EN applies to both VCT_TX and
VCT_RX. So it will be kept outside the VCT_TX block. The
TX_MFI_EN and TX_SHORT_FRAME_EN parameters
apply only to VCT_TX block but they may also be kept
outside as well.

Note that these global configuration parameters are
designed for speeding up verification.

3.1.2 Per Channel Configuration

3.1.2.1 TX_LPID_CFG_MEM

The following configuration parameters are grouped into

a 1344x9 dual port memory, which is shared by high and low
order channels.

15

20

25

30

35

40

45

50

55

60

65

Copies
2
2
Initial value

Parameter Size after global reset
TX_CH_RST 1 1
TX_CH_SO_LPID 8 Undefined
TX_CH_LCAS_REV_INS_EN 8 0
TX_CH_LCAS_REV_INS_SK_LPID 8 Undefined

3.1.2.2 TX_CH_VCAT FWD_CFG_MEM_0/1

The following configuration parameters are grouped into
a 1344x16 dual port memory, which is shared by high and
low order channels.

Parameter Size Initial value after global reset
TX_CH_VCAT_PL_SQ 6 Undefined
TX_CH_LCAS_OH_SQ 6 Undefined
TX_CH_VCAT_CTRL 4 IDLE

There are two copies of this memory to support dynamic
VCG configuration changes. Software makes per VCG
switch requests using the TX_SO_VCAT_FWD_SEL con-
figuration parameter. Hardware compares the TX_SO_V-
CAT_FWD_SEL configuration parameter with the internal
TX_SO_VCAT_FWD_COPY state variable. If they are dif-
ferent, this means that software has requested a change.
When the switch is done, hardware will set the TX_SO_V-
CAT_FWD_CHG_DONE interrupt status bit.

3.1.3 Per VCG Configuration Memories

3.1.3.1 TX_SO_PL_TYPE_CFG_MEM

The following configuration parameters are grouped into
a dual port 128x2 memory;

Parameter Size Initial value after global reset
TX_SO_VCAT_EN 1 0
TX_SO_LCAS_EN 1 0

While there are channels out of reset that are mapped to
this port, these parameters should not be changed.

3.1.3.2 TX_SO_VCAT_RBID_CFG_MEM_0/1

The following configuration parameters are grouped into
a dual port 128x10 memory;

Parameter Size Initial value after global reset

TX_SO_VCAT_RBID 10 Undefined

There are two copies of this memory to support dynamic
VCG configuration changes. Software makes per VCG
switch requests using the TX_SO_VCAT_FWD_SEL con-
figuration parameter. Hardware compares the TX_SO_V-
CAT_FWD_SEL configuration parameter with the internal
TX_SO_VCAT_FWD_COPY state variable. If they are dif-



US 9,461,942 B2

101
ferent, this means that software has requested a change.
When the switch is done, hardware will set the TX_SO_
VACT_FWD_CHG_DONE interrupt status bit.
3.1.3.3 SO_VCAT_FWD_SEL_CFG_MEM
The following configuration parameters are grouped into 5
a dual port 128x2 memory:

Initial value
after global

Parameter Size reset
TX_SO_VCAT_FWD_ SEL 1 0
TX_SO_VCAT_FWD_ CHG_DONE_INT_EN 1 0

3.1.3.4 SK_LCAS_REV_SEL_CFG_MEM 15

The following configuration parameters are grouped into
a dual port 128x2 memory:

Initial value 20
after
Parameter Size global reset

TX_SK_LCAS_REV_SEL 1 0
TX_SK_LCAS_REV_CHG_DONE_INT_EN 1 0

25

3.1.3.5 SK_LCAS_REV_CFG_MEM_0/1
The following configuration parameters are grouped into
a dual port 128x65 memory:

30

Parameter Size Initial value after global reset

TX_SK_LCAS_INS_MST 64 1
TX_SK_LCAS_INS_RS_ACK 1 0

35

There are two copies of this memory to support dynamic
VCG configuration changes. Software makes per VCG
switch requests using the TX_SK_LCAS_REV_SEL con-
tinuation parameter. Hardware compares the TX_SK_IL.-
CAS_REV_SEL configuration parameter with the internal 40
TX_SK_LCAS_REV_COPY state variable. If they are dif-
ferent, this means that software has requested a change.
When the switch is done, hardware will set the TX_SK_L-
CAS_REV_CHG_DONE interrupt status bit.

4 Interrupt Status Model 45

4.1 Interrupt Status Memories

Software has both read and write access to the interrupt
status memories to read and clear interrupt status bits.
Hardware needs only write access to set the interrupt status
bits. 50

If an interrupt status read request from software collides
with a write (i.e. set) request from hardware, new values
from the write request ate passed as read results.

If an interrupt states clear request from software collides
with a set request from hardware, the interrupt status will be 55
set.

4.1.1 Per VCG Interrupt Status Memories

4.1.1.1 TX_SO_VCAT_FWD_CHG_DONE_MEM

The following interrupt status parameters are grouped into
a dual port 128x1 memory: 60

Initial value after
Parameter Size global reset

TX_SO_VCAT_ FWD_CHG_DONE 1 0 65

102
4.1.1.2 TX_SK_LCAS_REV_CHG_DONE_MEM
The following interrupt states parameters are grouped into
a dual port 128x1 memory;

Initial value after
Parameter Size global reset

TX_SK_LCAS_REV_CHG_DONE 1 0

5 State Model

Except possibly in diagnostic mode, the state memories
do not need to be accessible by software.

Parity bits used for error detection in all state memories
except for the payload sequencer buffer are not shown in this
section.

5.1 State Memories

5.1.1 Per Channel State Memories

5.1.1.1 TX_CH_LCAS_STATE_MEM

The following state variables are grouped into a dual port
1344x12 memory, which is shared by high order and low
order channels.

Initial value after
Parameter Size channel reset
TX_CH_LCAS_CRC 8 0
TX_CH_LCAS_CRC_ALIGNED 1 0

5.1.2 Per VCG State Memories

5.1.2.1 TX_SO_VCAT_STATE_MEM

The following state variables are grouped into a dual port
128x10 memory:

Initial
value after
Parameter Size global reset
TX_SO_VCAT_FWD_COPY 1 0
TX_SO_VCAT_FWD_TOGGLE_STATE 2 0
TX_SO_VCAT_WR_B_SEL 1 0
TX_SO_VCAT_WR_POS 6 0

Although the above memory assumes that the write buffer
memory selection state is kept per VCG, it is possible to use
a global variable for each VCG type for this purpose.

5122 TX SK_LCAS_STATE MEM

The following state variables are grouped into a dual port
128x3 memory:

Initial
value after
Parameter Size global reset
TX_SK_LCAS_REV_COPY 1 0
TX_SK_LCAS_REV_TOGGLE_ STATE 1 0
TX_SK_LCAS_REV_TOGGLE_MFI2_LSB 1 Undefined
5.2 Global State Variables
Parameter Size Initial value after global reset
HO_ MFI1 4 0
HO__MFI2 8 0
HO_GID 16 0
LO_MFI1 5 0



US 9,461,942 B2

-continued
Parameter Size Initial value after global reset
LO_MFI2 5 0
LO_GID 16 0

5.3 Payload Reorder Buffer Memories

5.3.1 PL_REORDER_BUF_MEM_0/1

There are two copies of payload reorder buffer memory
(or memories) to implement the double buffering scheme
used by the reordering algorithm. It is possible to use single
port memories by aligning the read and write process
pipelines such that only one VCG is reading and writing
from the buffer memories within one clock.

SPEC for Aligner
6 Introduction

Orion’s VC/LCAS alignment block is responsible for
de-skewing or desequencing the member channels belong-
ing to the same virtually concatenated group (VCG). The
de-skewing is performed by compensating in external
DRAM the network differential delay accumulated by the
different channels.

The VCT aligner receives one byte of data per clock cycle
from the VCT analyzer, along with control information for
that byte. The data sequence consists of time interleaved
Sonet channels (HO SPEs or LO VT SPEs). There is no
frame no mufti-frame alignment between the different SPEs.
The differential delay between them is arbitrary and depen-
dent on the external network topology.

After going through the VCT aligner, the SPEs of all the
channels belonging to the same VCGs are multi-frame
aligned. At the output of the VCT aligner, contiguous
payload bytes for each VCG (on different) are made avail-
able. This is sufficient for the VCT De-sequencer to reorder
bytes and recover the VCG payload.

FIG. 12 shows the various modules within the VCT
alignment block. The VCT aligner consists of a Write
Manager module and Read Manager module. It also uses
information generated by the configuration, calendar gen-
eration, and failure handling logic. The Write Manager
temporarily stores data arriving one byte at a time on
per-channel FIFOs. After accumulating enough bytes for a
given channel they get sent to DRAM in a burst. The Read
Manager performs the inverse process: it reads data from
DRAM in bursts and stores the data on per channel FIFOs
before being sent out one byte at a time.

The alignment process itself is performed by the Read
Manager. This is done by selectively draining channel FIFOs
so that all FIFO data for a given VCG is aligned.

The entire VCT aligner makes heavy use of free-running
TDM calendars to move data from one stage to the next. All
calendars follow the same order of channels (determined
through configuration), but each calendar may rotate at a
different speed depending on the amount of data that needs
to be moved.

Also, a failure handling unit determines which channels
and VCGs are active at any given time. The system of FIG.
12 illustrates a system 1200 having and analyzer 1202, such
as an MF1 analyzer, a VCT aligner 1204 that includes a write
manager 1206 and a read manager 1208. The system further
includes a MCT 1210, winch may be internal or external to
the system. The output is sent, to the desequencer 1212.

7 Calendars

There are 5 stages within the VCT alignment block where
a free-running calendar is used to decide which channel is
being serviced next. There are 4 different calendars used for

10

15

20

25

30

35

40

45

50

55

60

65

104

this purpose (two of the stages share the same calendar).
Each calendar follows the same order which is determined
through configuration. However, each different calendar
travels this order using a different speed, resulting in differ-
ent periods. The four calendars in the VCT alignment block
have the following clock-cycle periods: 1x1344, 2x1344,
56x1344, and 62x1344.

FIG. 13 shows how the calendars are generated by the
VCT aligner. Calendar A (of size X, where X is 1, 2, 56, or
62) has a counter for each of the five wheels VC-4, VC-3,
VC-2,VC(C-12, and VC-11. The VC-4 wheel is of size 16; the
VC-3 wheel is of size 3; the VC-2 wheel is of size 7, the
VC-12 wheel is of size 3, and the VC-11 wheel is of size 4.

Every X core-clock cycles, the VC-4 counter is incre-
mented by 1. At 15, the counter rolls back to 0. For every
VC-4 rotation, the VC-3 counter is incremented by one.
Likewise, for every VC-3 rotation, the VC-2 counter is
incremented by one. Finally, for every VC-2 rotation, both
the VC-11 and VC-12 counters are incremented by one.

The same mechanism is performed for every other cal-
endar, except that the period for updating the first wheel
(VC-4) may vary.

In this manner, the four calendars of different speeds are
generated by the VCT alignment block. At any time, each
calendar provides the current VC-4, VC-3, VC-2, VC-12,
and VC-11 counters. This information, along with the chan-
nelizations configuration, is sufficient to determine the chan-
nel number to be processed next.

The channelization configuration requires 48x9 bits as
shown in Table 7. This information might have to be
replicated for each calendar to avoid read conflicts.

TABLE 7
Channelization information required in VCT alignment block.
x48
Field Size Description
vC4 1 1 if this sts is part of a VC-4 (sts-3¢)
VT 1 1 if sts contains VTs. Used to differentiate
between VC-4/3 (including TU-3 mapping) and
VC-11/12
VTG1 1 1 if VTG #1 has VC-11. 0 if it has VC-12
VTG2 1 1 if VTG #2 has VC-11. 0 if it has VC-12
VTG3 1 1 if VTG #3 has VC-11. 0 if it has VC-12
VTG4 1 1 if VTG #4 has VC-11. 0 if it has VC-12
VTGS 1 1 if VTG #5 has VC-11. 0 if it has VC-12
VTG6 1 1 if VTG #6 has VC-11. 0 if it has VC-12
VTG7 1 1 if VTG #7 has VC-11. 0 if it has VC-12

8 DRAM Organization and Shared State

The VCT alignment block writes and reads data to/from
external DRAM in 64-byte transfers. The external DRAM
can bold up to 64 MB of VCAT data. If less storage is
required. The DRAM can also be configured to bold only up
to 16, 32, or 48 MB of memory. Note that this is a global
configuration setting for the entire VCT block.

TABLE 8

DRAM size configuration.

Field Size Description

DRAM Size 2 Size of DRAM space allocated for
VCAT. 00-16 MB, 01-32 MB, 10-48 MB,
11-64 MB

The VCAT data in DRAM is organized in per-channel
FIFOs. There are up to 1344 such FIFOs. The maximum size



US 9,461,942 B2

105 106
of each FIFO depends on the type of channel as well as the TABLE 10-continued
global size of the VCAT DRAM (16MB-64 MB). Each
FIFO uses a fixed position in DRAM that is fixed after the DRAM allocation for VCAT.

VCT block comes out of reset.
The DRAM location used by each FIFO is determined in 5 <henel ope

such a way that consecutive reads and writes are issued to V-3 Lowest address (a,a, * 256 + B * 84) * VMU * (S + 1)
different DRAM banks. Table F shows how the different Veo3 Max Size 84 % VMU * (S + 1)

VC-4s (sts-3s) are organized in DRAM so that consecutive VC-12 Lowest address (a8, * 256 + B* 84 + C* 12+ D * 4) *
accesses to the VC-4s will result in continuous periodic VMU * (S + 1)

interleaving of banks 0 through 3.
TABLE F

DRAM bank interleaving of VCAT FIFOs.

VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4 VC-4
HO O #4 HR HI2  HL #S HO  HI3 #2  H6 #10 #14  #3 #T #11 #15

20
The size of each FIFO depends on the channel type and TABLE 10-continued
total VCAT DRAM size. The smallest FIFO would corre- .
spond to a vt 1.5 channel in a VCAT DRAM of size 16MB, DRAM allocation for VCAT.

while the largest FIFO would correspond to an sts-3¢ in a

25 Channel type
VCAT DRAM of size 64 MB. In order to accommodate

these variable FIFO sizes, we define a VCAT memory unit VC-12 Max Size 4% VMU * (S + 1)
. . . A VC-11 Lowest address (aja, * 256 + B* 84 +C * 12+ E * 3) *
(VMU) that is thee basic memory size that can be reassigned VMU * (S + 1)
to different FIFOs. VC-11 Max Size 3*VMU * (S +1)
A VMU has a size of 4096 or 4KB. A VMU can hold up ., Bank Number a3ay

to 64 64-byte transfers from the VCT block. When in 16MB
mode, a vtl.5 channel is assigned 3 VMUs of DRAM
storage, a vt2 is assigned 4 VMUSs, an sts-1 is assigned 84
VMU, and an sts-3c is assigned 256 VMUSs. IT the VCAT
DRAM has more than 16MB, the per-channel storage is

Note that the above memory allocation scheme leaves a
hole of 16 KB for every 1MB, whenever that space is not
used for sts-3c.

increased proportionately. 35 The above calculation results in a 2-bit bank number as
A fixed formula can be used to calculate the position in ~ Well as an 18 bit memory address (in 64 byte units).
DRAM that is used by a given FIFO. The calendar indices For each channel FIFO, the alignment block needs to
of that channel as well as the channel type, are used as the carry the following state information:
input for the formula to compute the starting address of the ,
FIFO. Use maximum size of the FIFO depends only on the TABLE 11
type of the channel. Let the following variables A, B, C, D,
and E be the calendar indices for a given channel: Shared state f‘ig ERAM FIFOs.
X
TABLE 9 45 Read pointer 16 Pointer to head of DRAM FIFO
Write pointer 16 Pointer to tail of DRAM FIFO
Calendar indices for a given channel. Invalid FIFO 1 1 if FIFO is invalid and should not be read
Head MFI 12 MFI value of first frame being written after
Index Value Index Value failure mode
vC-4 VC-4: ajaya33, (4 bits)  VC-3 VC-3: B (2 bits)
VC-2  VC-2: C (3 bits) VC-12 VC-12: D (2 bits) 50

The pointers are stored in 64-byte units and are added to
the channel FIFO base address to obtain the actual DRAM
memory location. The write pointer is updated by the write

Using the calendar indices and channel type. Table 10 manager as it stores new 64-byte chunks into DRAM. The
specifies the formula used to compute the bank number, read pointer is updated by the read manager as it obtains a
starting address, and maximum size of each channel FIFO in 3 hew 64-byte transfers from DRAM.

DRAM. Not that in these formulas, VMU is 4 KB and “S” The read pointer is read by the write manager to make

is the global configuration register specifying the total space sure the FIFO is not full. The write pointer is also read by
used by VCAT (0-16 MB, 1-32 MB, 2-48 MB, 3-64 MB). the read manager in order to verify that the FIFO is not

VC-11  VC-11: E (2 bits)

TABLE 10 0GP
When a FIFO is reset by the write manager, it will first set
DRAM allocation for VCAT. the Invalid FIFO bit to one, and then write zero into both the
write and read pointers. Whenever a FIFO comes out of
Channel type reset, the write manager will first write the MFI number of
VC-4 Lowest address (a,a, * 256) * VMU * (S + 1) 65 the new valid data into the “Head MFI” field. It will then
VC-4 Max Size 256 * VMU * (S + 1) write the new 64-byte transfer into DRAM, update the write

pointer, and unset the Invalid FIFO bit.



US 9,461,942 B2

107

9 Reset, Failures, and Alarms

The alignment block supports per-channel as well as
per-VCG reset. Both resets are enabled by software by
writing into the appropriate RX configuration registers.
When a channel is in reset, the alignment block, will not
process that channel and will flush any FIFOs belonging to
that FIFO. When an entire VCG is in reset, it will cause all
the member channels to be in reset.

The alignment block also supports per-channel and per-
VCG failure mode. Failure mode is very similar to reset
mode, except that the mode can be triggered directly by
hardware, rather titan software. A channel in failure mode is
not processed and its FIFOs are flushed. A VCG in failure
mode will force all its members to be in failure mode. Unlike
software resets that affect channels and VCGs in the entire
RX block, the failure mode only a fleets channels and VCGs
in the alignment block.

There are also two types of per channel alarms in the
alignment block. The write manager has a per-channel alarm
state when it receives an alarm from the analyzer. Likewise,
the read manager has a per channel alarm state when it
receives an alarm from the MCT. The next sections will
describe how these alarms are detected.

The failure scenarios are different depending on whether
a given channel has been “accepted” by software or not. An
accepted member is one that is carrying or expecting to carry
valid data. A non-accepted member is one that is not
carrying valid data (is in LCAS idle state) bat needs to be
aligned with the rest of the VCG in order to process its
LCAS information. Non-accepted members are treated dif-
ferently because a problem with them should not affect other
accepted members of the VCG.

FIG. 14 shows how reset and failure modes work together
for accepted and non-accepted members. VCG reset and
channel reset are configuration, states that are written by
software. On the other hand, the per-channel read and write
alarms are internal states maintained by hardware. Similarly,
VCG failure and channel failure are also internal states
maintained by hardware.

A single piece of logic, using any of the available calen-
dars, uses the reset and alarm states to determine the failure
states.

If any of the accepted channels of a VCG has its read
alarm set, then the VCG failure bit will be set. On the other
band, if none of the channels of a VCG has its write alarm
set, then the VCG failure bit is cleared. In order to ensure
enough time for Hushing the FIFOs, the VCG failure state
needs to be asserted for a minimum amount of time of
1344x64 core-clock cycles.

When a VCG is in failure or reset mode, then all its
members (accepted and non-accepted) will have their failure
bits set. A channel failure bit will also be set when the
channel is in reset mode. An accepted channel failure bit will
only be cleared if the channel reset, the corresponding VCG
reset, and the corresponding VCG failure bits are cleared.
The incoming data must also be at the start of frame.

For non-accepted members, alarms will not cause VCG
failures. Instead a channel read alarm (on the non-accepted
member) will cause the member to go in failure mode. The
channel will also go into failure mode if it is in reset. Once
it is in failure mode, the non-accepted channel will set a
sticky failure bit.

For a non-accepted member to go out of failure mode, it
must have no write alarm, no reset, the sticky bit must have
been cleared by software, and it must be receiving the start
of frame.

20

25

40

45

50

55

108

The following table summarizes the bits required to
maintain the alarm, reset, and failure states. Note that the
space dedicated to reset state, the accepted bit, and the
failure sticky bit is in the RX configuration.

TABLE 12

Alignment block alarm, reset, and failure state.

Field Size Description
x128

VCG Reset 1 Entire VCG is in reset state

VCG Failure 1 Entire VCG has failed

x1344

Channel Reset 1 Channel is in reset state

Channel Failure 1 Channel is in failure state

Write Alarm 1 Alarm was detected by write manager

Read Alarm 1 Alarm was detected by read manager

Failure sticky 1 Stays high if a channel was in failure mode.
Needs to be cleared by software.

Accepted 1 Member has been expected by software.
Expected to carry valid data now or in the
near future.

DRAM overflow 1 DRAM FIFO has overflowed. Will cause a
VCG failure

10 Write Manager

FIG. 15 shows another diagrammatic view of the write
manager.

The write manager has 1344 main FIFOs, one for each
channel. There is a two byte staging RAM preceding each
FIFO. After all the main FIFOs, there is a single 62 byte
RAM which is used to store bytes before they are sent as a
single transfer to the MCT.

A byte arriving from the CXC is stored into the two-byte
memory corresponding to its channel. A free running cal-
endar periodically empties out the contents of the 2-byte
memory into the corresponding main FIFO. Note that, most
of the time, we will be writing two bytes worth of data, but
sometimes there might be only 1 byte or none.

The main FIFO is made out of single port memories.
Therefore, reads and writes in and out of these FIFOs are
interleaved. There is a read cycle between every two write
cycles and vice-versa. The free-running calendar that trans-
fers data from the 2-byte RAM to its corresponding FIFO is
naming at full speed (no idles). A new FIFO is visited every
two clocks cycles and up to two bytes are inserted during
that clock cycle. The period will repeat every 1344x2 cycles.

Similarly, a free-running calendar selects a main FIFO
every 62 clock cycles and drains its contents (62 bytes or
less) into a 62-byte RAM. The amount of data transferred is
counted. This count and a null byte are prepended to the 62
bytes of data to form a 64-byte transfer. The overhead also
contains a bit that signals failure (AIS) of the incoming
channel as well as a parity bit protecting the 1-byte header.
Table G illustrates the 64-byte transfer seat to the MCT. The
period will repeat every 1344x62 cycles. This is illustrated
in FIG. 16.

10.1 Alarm and Failure States

If a given channel receives data with the alarm signal from
the analyzer block, it always sets the channel write alarm
state. When it stops receiving alarmed data, it will clear the
write alarm state.

If a channel is in write alarm state, but not in failure state,
the write manager continues to write data to the MCT, but
this data consists of all-ones, along with the alarm bit its the
64-byte transfer unit being active. The 2-byte and main
FIFOs are not used, but need not be flushed (as long as the



US 9,461,942 B2

109

channel is not in failure mode). When a non-failed channel
comes out of write alarm, the write manager continues
writing to the MCT. Even though this data is stale, it does no
harm to write it into the MCT.

As will be seen in the next section, setting the alarm bit
in 64-byte transfer unit, will eventually cause a read alarm
and consequently a VCG failure. VCG failure can also be
caused by VCG reset or by a member of the VCG trying to
write into a foil FIFO. VCG failure will then create channel
failures on all its members.

If a given channel is in failure state, the write manager no
longer writes data to the MCT. Instead, the time intervals
dedicated to that channel are used to flush the 2-byte FIFO,
the main FIFO, as well as the DRAM FIFO. Data pushed by
the CXC for that channel is discarded. The 2-byte FIFO and
the main FIFO are flushed by reading the data as usual
without passing it to the next stage. The DRAM FIFOs are
flushed by setting the Invalid FIFO bit and by resetting the
read and write pointers.

When a member conies out of failure state (it must be at
the beginning of a frame), the MFI for the new frame is
written in the Head MFI field. The new data transfer is sent
to the MCT, and the write pointer is updated. Finally, the
FIFO invalid bit is unset.

11 Read Manager

FIG. 17 shows a block diagram of the read manager. The
read manager has 1344 main FIFOs, one for each channel.
Each FIFO has a size of 120 bytes. There is a two byte
staging RAM after each FIFO. Before the main FIFOs, there
is a single 62 byte RAM which is used to store bytes
received from a single MCT transfer, while these bytes acre
being written to the main FIFOs.

A free-funning calendar selects a main FIFO every 56
clock cycles. If the FIFO level is less than 58 bytes, then a
read request is made to the MCT for that FIFO. When a read
request is made, 62 bytes (or less) are eventually written into
that FIFO. The read request period is repeated every
56x1344 clock cycles. Since each MCT transfer carries at
least 56 bytes, this guarantees that the FIFO will not be
totally empty as long as there is data its DRAM.

The read manager maintains a FIFO of requests that it has
made to the MCT for which it has not received data yet.
When a new request is made, a new entry is placed at the tail
of this requests-on-the-fly FIFO. The entry contains the
channel ID of the request. When a new piece of data is
received from the MCT, the entry at the head of the
requests-on-the-fly FIFO is retrieved. The channel ID on that
entry indicates the FIFO to which that data belongs.

The maximum size of this requests-on-the-fly FIFO is 16
entries. If this FIFO is ever full, it is indicative, of a DRAM
bandwidth problem. This is NOT a catastrophic event. The
read manager simply skips the current timeslot (does not
make a new request in that timeslot), and keeps operating
normally. If this overflow condition is only temporary, the
read manager will eventually make up for the lost band-
width.

If the request FIFO overflow condition happens too
frequently, the DRAM FIFOs will eventually overflow and
the alignment process will fail. This is an indication that the
DRAM bandwidth is insufficient In order to be able to detect
this condition, the read manager keeps a global 32-bit status
counter that records the number of times an overflow
condition has been detected or a MCT not ready is detected.
The CPU is notified via a (maskable) interrupt whenever the
counter value changes.

The read manager may also need op to 16 62-byte buffers
to store bursts of data coming from the MCT. If writing into

10

15

20

25

30

35

40

45

50

55

60

65

110

the main FIFO is faster than 2-bytes for every two cycles,
this buffering can potentially be decreased.

The main FIFO is made out of single port memories.
Therefore, reads and writes in and out of these FIFOs are
interleaved. There is a read cycle between every two write
cycles and vice-versa.

Another free running calendar periodically fills the con-
tents of the 2-byte memories by transferring data from the
corresponding main FIFO. This is done 2 bytes at a time
every two cycles (only during read cycles). The period
repeats itself every 1344x2 cycles.

Another free-running calendar pulls data from the 2-byte
staging RAM to send to the desequencer. One byte may be
read every dock cycle from a different RAM. The period
repeats itself every 1344 cycles. Section 11.2 describes how
the read state machine decides whether to read a byte or not.

1.11 Alarm and Failure States

The read manager detects read alarms by observing the
alarm bit in five 64-byte transfer unit that is read from the
MCT.

If a read alarm is detected on an accepted channel, it will
cause the entire VCG to go into failure stale. This will then
cause every member of that VCG to go into failure mode. If
a read alarm is detected on a non-accepted channel, it will
only cause that channel to enter into failure state.

While a channel is in failure mode, the read manager does
not read data from the MCT. During the time intervals
dedicated to that channel, the read manager simply flushes
the corresponding main FIFO and 2-byte FIFO. On the
interface to the DeSequencer, it sends an all-ones byte, along
with an alarm indication.

When a channel comes oat of failure mode, it checks to
see if the DRAM FIFO invalid bit is cleared. Once this bit
is cleared, it reads the Head MFI value for that channel. It
can now continue reading from the MCT and proceed with
the normal operations.

11.2 Read State Machine

The following state machine describes the operation per-
formed by the read manager in order to achieve alignment of
all members of a VCG. The state machine decides, for each
channel, whether the byte sitting at the head of the 2-byte
FIFO should be kept there, read and discarded, or read and
passed to the DeSequencer. The appropriate combination of
these 3 operations will byte-align all members of the same
VCG.

Table 13 shows the additional state required for each
VCG. The per-VCG state contains information describing
the conditions of a given VCG as it is trying to align itself.
The alignment MFI (AMF]I) is the target MFI to which the
entire VCG is trying to align itself. Aligned members have
their own MFI locked to the VCG’s AMFI The SOF bit
indicates that the aligned members of the VCG are encoun-
tering a start of frame. The DRAIN bit indicates that there
is at least one member of the group that is trying to catch up
to the aligned members (later this is defined as being in
DRAIN state). Finally the STALL bit indicates that at least
one aligned member of the VCG has an empty FIFO. This
means that that the entire VCG needs to wait for this one
member.

TABLE 13
Additional per-VCG state require by Read Manager state machine.
x128
Field Size  Description
AMFI 12 (x1) Alignment MFI that all VCG member are

trying to reach.



US 9,461,942 B2

111
TABLE 13-continued

Additional per-VCG state require by Read Manager state machine.

x128

Field Size  Description

AMFI__VALID 1 (x1) 1 if AMFI is valid. Set to 0 during
FAILURE state

VCG_NSOF 1 (x3) 1 if aligned members are NOT at start of
frame position

VCG_DRAIN 1 (x3) 1 if at least one member of the VCG is in
DRAIN state

VCG_STALL 1 (x3) 1 if entire VCG has to wait temporarily for

FIFO to refill

There are 3 copies of the per-VCG states NSOF, DRAIN,
and STALL (or wait). FIG. 18 illustrates how the 3 copies
are used. During one calendar rotation period, the state
machine is writing into one of the copies, reading from
another one, and clearing the 3rd copy. After a calendar
rotation, the write copy becomes the read copy, the read
copy becomes the clear copy, and the clear copy becomes
the write copy.

Note that each type of VCG (VC-4, VC-3, VC-12, and
VC-11) has a different calendar rotation period. The VC-4
calendar rotates every 16 core clock cycles, the VC-3
calendar rotates every 48 core clock cycles, the VC-12
calendar rotates every 1008 cycles, and the VC-11 calendar
rotates every 1344 cycles. Therefore for each of the 4 VCG
types, we need a set of pointers indicating which of the 3
copies is write, read, or clear.

Table 14 shows the additional per-channel state required
by this state machine.

10

15

20

25

30

TABLE 14
Additional per-channel state require by Read Manager state machine.
x1344

CMFI 12 Current MFI of byte at the head of the 2-byte
FIFO

STATE 3 Determines if the state is FAIL, INIT,
WAIT, DRAIN, or GO

BYTE_COUNT 12 Number of bytes processed for the current packet

FIG. 19 shows a high-level state diagram of the algorithm
used by the Read Manager to perform alignment. When not
in channel failure mode, each channel can be in one of 4
states: INIT, WAIT, DRAIN, and GO.

In INIT state, a channel is waiting to obtain the MFI value
from Head MFI field. Once the current MFI value is
obtained, the channel can determine whether it is too far
ahead of the alignment MFI (WAIT state) or whether it is too
far behind the alignment MFI (DRAIN state). In WAIT state
the FIFO is never drained, while in DRAIN state that FIFO
is always drained and the data discarded. When the channel
MEFT is the same as the alignment MFI, it enters the GO state
where it is now reading data from the FIFO along with the
other members of the VCG in GO state. All the members in
GO state are aligned. A per-channel status bit (and interrupt)
will notify software of whether a given channel is aligned or
not.

The following pseudo-code explains in more detail the
read manager algorithm. The subscripts _write, _read, and
_clear are used to indicate which of the 3 per-VCG state
copies is being used.

—

. Check for channel failure

If channel failure bit is set

Go to step 7

If channel failure bit is released
Set state to INIT
2. Initialization and Read Actions

If (state == INIT)

If (DRAM FIFO invalid == 1) or (SRAM FIFO is empty)

Stay in INIT
Else

Get CMFI from Head MFI field
If (AMFL_VALID == 0)

Stay in INIT

Else If (CMFI <= AMFT)
Set state to DRAIN
Else If (CMFI > AMFI)
Set state to WAIT
If (state == DRAIN)
If (CMFI == AMFI) and (VCG_NSOF__read == 0) and (channel is in SOF)

Set state to GO

Else If (SRAM FIFO is non-empty) and (VCG_STALL_ read == 0)
Read byte from Read Mgr FIFO and throw it away

If (state == WAIT)

If (CMFI == AMFI) and (VCG_NSOF__read == 0)
If (VCG_STALL_ read == 0) and (VCG_DRAIN_ read ==0)
Read byte from Read Mgr FIFO and send to De-Sequencer

Set state to GO

If (state == GO)

If (VCG_STALL_ read == 0) and [(VCG_NSOF__read == 1) or (VCG_DRAIN_ read == 0)]
Read byte from Read Mgr FIFO and send to De-Sequencer

If (state == IDLE)

Transmit “Fail/Reset” to De-Sequencer
4. Write Actions (using FIFO levels and byte counts updated after step 3)
If (state == DRAIN)
VCG_DRAIN_ write = 1
If (state == GO) and (SRAM FIFO is empty)
VCG_STALL_ write = 1
If [(state == GO) and SRAM FIFO head is NOT SOF
VCG_NSOF_write = 1
5. Update CMFI (using FIFO levels and byte counts updated after step 3)



US 9,461,942 B2

113

-continued

114

[

. Update AMFI (using CMFI values computed in step 5)
If (state == INIT) and (DRAM FIFO invalid == 0) and
(AMFI_VALID ==0) and (SRAM FIFO is non-empty)
AMFI = CMFI
AMFI_VALID = 1

If state = GO
AMFI = max (CMFI, AMFI)
AMFI_VALID = 1

. Clear Actions
VCG_DRAIN_ clear =0
VCG_STALL_ clear = 0
VCG_NSOF_clear = 0

~1

12 Optimizations
12.1 Write Main FIFOs
FIG. 20 illustrates how the main FIFOs are distributed.

What is claimed is:
1. A system for performing a Link Capacity Adjustment
Scheme (LCAS) in a network system which receives input
data from a plurality of data channels, each data channel
from among the plurality of data channels carrying data,
comprising:
a plurality of counters configured to be clocked at differ-
ent clock-cycle periods and to produce a plurality of
counter indices; and
a data aligner configured to:
align the data based on the plurality of counter indices
according to a configuration of a Virtual Concat-
enated Group (VCG) to produce aligned data,

move the aligned data to a desequencer based on the
plurality of counter indices, and

indicate to an LCAS controller, during each clock-cycle
period, whether valid data is available to be passed
on a respective channel during a respective clock-
cycle period.

2. The system according to claim 1, wherein the data
aligner comprises:

a write manager configured to store the input data as a

plurality of data bytes;

a multi-channel transparency module configured to store
the plurality of data bytes as channel-grouped data; and

a read manager configured to store the channel-grouped
data as the aligned data.

3. The system according to claim 2, wherein the write
manager includes a first static random access memory
(SRAM) module, wherein the multi-channel transparency
module includes a dynamic random access memory
(DRAM) module, and wherein the read manager includes a
second SRAM module.

4. The system according to claim 3, wherein the write
manager is further configured to store the plurality of data
bytes in the first SRAM module and to send the plurality of
data bytes to the DRAM module.

5. The system according to claim 4, wherein the read
manager is further configured to read the channel-grouped
data from the DRAM module as a data burst to store the
aligned data, and to send the aligned data to the desequencer.

6. The system according to claim 1, further comprising:

an LCAS control manager configured to generate de-
sequencing control commands in response to the
aligned data.

7. The system according to claim 6, wherein the LCAS

control manager comprises:

an LCAS state machine configured to store and manage
state data and to add a member channel to the VCG.

35

40

45

55

60

65

8. The system according to claim 6, wherein the LCAS
control manager is responsive to the plurality of counter
indices.

9. A system for performing a Link Capacity Adjustment
Scheme (LCAS) in a network system which receives input
data from a plurality of data channels, each data channel
from among the plurality of data channels carrying data,
comprising:

a data aligner configured to store the input data in a first
memory, to transfer the input data from the first
memory to a second memory such that the second
memory separates the input data according to corre-
sponding channels, to process the input data stored in
the second memory, and to transfer the input data from
the second memory to a third memory as aligned data;
and

a plurality of counters configured to be clocked at differ-
ent clock-cycle periods and to produce a plurality of
counter indices,

wherein the data aligner is further configured to align the
data stored in the second memory based on the plurality
of counter indices according to a configuration of a
Virtual Concatenation Group (VCG) to produce the
aligned data and to indicate to an LCAS controller,
during each clock-cycle period, whether valid data is
available to be passed on a respective channel during a
respective clock-cycle period.

10. The system according to claim 9, wherein the data

aligner comprises:

a write manager configured to store the input data as a
plurality of data bytes in a first static random access
memory (SRAM) module;

a multi-channel transparency module configured to store
the plurality of data bytes as channel-grouped data in a
dynamic random access memory (DRAM) module; and

a read manager configured to store the channel-grouped
data in a second SRAM module as the aligned data.

11. The system according to claim 9, further comprising:

an LCAS control manager configured to generate de-
sequencing control commands in response to the
aligned data; and

a de-sequencer configured to de-sequence the aligned data
according to the de-sequencing control commands.

12. The system according to claim 11, wherein the LCAS
control manager comprises:

an LCAS state machine configured to add a member
channel to the VCG.

13. The system according to claim 12, wherein the LCAS
control manager is further configured to respond to the
plurality of counter indices.

14. A method for performing a Link Capacity Adjustment
Scheme (LCAS) in a network system, comprising:



US 9,461,942 B2

115

receiving input data from a plurality of data channels,
each data channel from among the plurality of data
channels including data;
grouping the data according to corresponding data chan-
nels to provide channel-grouped data;
allocating a plurality of counters configured to be clocked
at different clock-cycle periods and to produce a plu-
rality of counter indices;
determining a channel processing order based on the
plurality of counter indices;
indicating, during each clock-cycle period, whether valid
data is available to be passed on a respective channel
during a respective clock-cycle period; and
processing the channel-grouped data utilizing the plural-
ity of clocks in accordance with the channel processing
order to provide aligned data.
15. The method according to claim 14, further compris-
ing:
sending the aligned data to a desequencer.
16. The method according to claim 14, wherein the
receiving comprises:
receiving the input data in accordance with a Synchronous
Optical Network (SONET) transport protocol.
17. The method according to claim 14, further compris-
ing:
generating de-sequencing control commands in response
to the aligned data; and
de-sequencing the aligned data according to the de-
sequencing control commands.

#* #* #* #* #*

5

10

15

20

25

30

116



